Do you want to publish a course? Click here

Multimodal Interaction-aware Motion Prediction for Autonomous Street Crossing

79   0   0.0 ( 0 )
 Added by Abhinav Valada
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

For mobile robots navigating on sidewalks, it is essential to be able to safely cross street intersections. Most existing approaches rely on the recognition of the traffic light signal to make an informed crossing decision. Although these approaches have been crucial enablers for urban navigation, the capabilities of robots employing such approaches are still limited to navigating only on streets containing signalized intersections. In this paper, we address this challenge and propose a multimodal convolutional neural network framework to predict the safety of a street intersection for crossing. Our architecture consists of two subnetworks; an interaction-aware trajectory estimation stream IA-TCNN, that predicts the future states of all observed traffic participants in the scene, and a traffic light recognition stream AtteNet. Our IA-TCNN utilizes dilated causal convolutions to model the behavior of the observable dynamic agents in the scene without explicitly assigning priorities to the interactions among them. While AtteNet utilizes Squeeze-Excitation blocks to learn a content-aware mechanism for selecting the relevant features from the data, thereby improving the noise robustness. Learned representations from the traffic light recognition stream are fused with the estimated trajectories from the motion prediction stream to learn the crossing decision. Furthermore, we extend our previously introduced Freiburg Street Crossing dataset with sequences captured at different types of intersections, demonstrating complex interactions among the traffic participants. Extensive experimental evaluations on public benchmark datasets and our proposed dataset demonstrate that our network achieves state-of-the-art performance for each of the subtasks, as well as for the crossing safety prediction.



rate research

Read More

Autonomous driving in mixed traffic requires reliable motion prediction of nearby traffic agents such as pedestrians, bicycles, cars, buses, etc.. This prediction problem is extremely challenging because of the diverse dynamics and geometry of traffic agents, complex road conditions, and intensive interactions among the agents. In this paper, we proposed GAMMA, a general agent motion prediction model for autonomous driving, that can predict the motion of heterogeneous traffic agents with different kinematics, geometry, human agents inner states, etc.. GAMMA formalizes motion prediction as geometric optimization in the velocity space, and integrates physical constraints and human inner states into this unified framework. Our results show that GAMMA outperforms state-of-the-art approaches significantly on diverse real-world datasets.
We address one of the crucial aspects necessary for safe and efficient operations of autonomous vehicles, namely predicting future state of traffic actors in the autonomous vehicles surroundings. We introduce a deep learning-based approach that takes into account a current world state and produces raster images of each actors vicinity. The rasters are then used as inputs to deep convolutional models to infer future movement of actors while also accounting for and capturing inherent uncertainty of the prediction task. Extensive experiments on real-world data strongly suggest benefits of the proposed approach. Moreover, following completion of the offline tests the system was successfully tested onboard self-driving vehicles.
Existing research on autonomous driving primarily focuses on urban driving, which is insufficient for characterising the complex driving behaviour underlying high-speed racing. At the same time, existing racing simulation frameworks struggle in capturing realism, with respect to visual rendering, vehicular dynamics, and task objectives, inhibiting the transfer of learning agents to real-world contexts. We introduce a new environment, where agents Learn-to-Race (L2R) in simulated competition-style racing, using multimodal information--from virtual cameras to a comprehensive array of inertial measurement sensors. Our environment, which includes a simulator and an interfacing training framework, accurately models vehicle dynamics and racing conditions. In this paper, we release the Arrival simulator for autonomous racing. Next, we propose the L2R task with challenging metrics, inspired by learning-to-drive challenges, Formula-style racing, and multimodal trajectory prediction for autonomous driving. Additionally, we provide the L2R framework suite, facilitating simulated racing on high-precision models of real-world tracks. Finally, we provide an official L2R task dataset of expert demonstrations, as well as a series of baseline experiments and reference implementations. We make all code available: https://github.com/learn-to-race/l2r.
98 - Ce Ju , Zheng Wang , Cheng Long 2019
Forecasting the motion of surrounding obstacles (vehicles, bicycles, pedestrians and etc.) benefits the on-road motion planning for intelligent and autonomous vehicles. Complex scenes always yield great challenges in modeling the patterns of surrounding traffic. For example, one main challenge comes from the intractable interaction effects in a complex traffic system. In this paper, we propose a multi-layer architecture Interaction-aware Kalman Neural Networks (IaKNN) which involves an interaction layer for resolving high-dimensional traffic environmental observations as interaction-aware accelerations, a motion layer for transforming the accelerations to interaction aware trajectories, and a filter layer for estimating future trajectories with a Kalman filter network. Attributed to the multiple traffic data sources, our end-to-end trainable approach technically fuses dynamic and interaction-aware trajectories boosting the prediction performance. Experiments on the NGSIM dataset demonstrate that IaKNN outperforms the state-of-the-art methods in terms of effectiveness for traffic trajectory prediction.
Motion prediction of vehicles is critical but challenging due to the uncertainties in complex environments and the limited visibility caused by occlusions and limited sensor ranges. In this paper, we study a new task, safety-aware motion prediction with unseen vehicles for autonomous driving. Unlike the existing trajectory prediction task for seen vehicles, we aim at predicting an occupancy map that indicates the earliest time when each location can be occupied by either seen and unseen vehicles. The ability to predict unseen vehicles is critical for safety in autonomous driving. To tackle this challenging task, we propose a safety-aware deep learning model with three new loss functions to predict the earliest occupancy map. Experiments on the large-scale autonomous driving nuScenes dataset show that our proposed model significantly outperforms the state-of-the-art baselines on the safety-aware motion prediction task. To the best of our knowledge, our approach is the first one that can predict the existence of unseen vehicles in most cases. Project page at {url{https://github.com/xrenaa/Safety-Aware-Motion-Prediction}}.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا