Do you want to publish a course? Click here

Two-Dimensional Ferroelastic Topological Insulators in Single-Layer Janus Transition Metal Dichalcogenides MSSe (M=Mo, W)

141   0   0.0 ( 0 )
 Added by Yandong Ma
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Two-dimensional topological insulators and two-dimensional materials with ferroelastic characteristics are intriguing materials and many examples have been reported both experimentally and theoretically. Here, we present the combination of both features - a two-dimensional ferroelastic topological insulator that simultaneously possesses ferroelastic and quantum spin Hall characteristics. Using first-principles calculations, we demonstrate Janus single-layer MSSe (M=Mo, W) stable two-dimensional crystals that show the long-sought ferroelastic topological insulator properties. The material features low switching barriers and strong ferroelastic signals, beneficial for applications in nonvolatile memory devices. Moreover, their topological phases harbor sizeable nontrivial band gaps, which supports the quantum spin Hall effect. The unique coexistence of excellent ferroelastic and quantum spin Hall phases in single-layer MSSe provides extraordinary platforms for realizing multi-purpose and controllable devices.



rate research

Read More

We performed comparable polarized Raman scattering studies of MoTe2 and WTe2. By rotating crystals to tune the angle between the principal axis of the crystals and the polarization of the incident/scattered light, we obtained the angle dependence of the intensities for all the observed modes, which is perfectly consistent with careful symmetry analysis. Combining these results with first-principles calculations, we clearly identified the observed phonon modes in the different phases of both crystals. Fifteen Raman-active phonon modes (10Ag+5Bg) in the high-symmetry phase 1T-MoTe2 (300 K) were well assigned, and all the symmetry-allowed Raman modes (11A1+6A2) in the low-symmetry phase Td-MoTe2 (10 K) and 12 Raman phonons (8A1+4A2) in Td-WTe2 were observed and identified. The present work provides basic information about the lattice dynamics in transition-metal dichalcogenides and may shed some light on the understanding of the extremely large magnetoresistance (MR) in this class of materials.
86 - Haowei Xu , Hua Wang , Jian Zhou 2021
Nonlinear optical properties, such as bulk photovoltaic effects, possess great potential in energy harvesting, photodetection, rectification, etc. To enable efficient light-current conversion, materials with strong photo-responsivity are highly desirable. In this work, we predict that monolayer Janus transition metal dichalcogenides (JTMDs) in the 1T phase possess colossal nonlinear photoconductivity owing to their topological band mixing, strong inversion symmetry breaking, and small electronic bandgap. 1T JTMDs have inverted bandgaps on the order of 10 meV and are exceptionally responsive to light in the terahertz (THz) range. By first-principles calculations, we reveal that 1T JTMDs possess shift current (SC) conductivity as large as $2300 ~rm nm cdot mu A / V^2$, equivalent to a photo-responsivity of $2800 ~rm mA/W$. The circular current (CC) conductivity of 1T JTMDs is as large as $10^4~ rm nm cdot mu A / V^2$. These remarkable photo-responsivities indicate that the 1T JTMDs can serve as efficient photodetectors in the THz range. We also find that external stimuli such as the in-plane strain and out-of-plane electric field can induce topological phase transitions in 1T JTMDs and that the SC can abruptly flip their directions. The abrupt change of the nonlinear photocurrent can be used to characterize the topological transition and has potential applications in 2D optomechanics and nonlinear optoelectronics.
The family of two-dimensional transition metal carbides, so called MXenes, has recently found new members with ordered double transition metals M$_2$M$$C$_2$, where M$$ and M$$ stand for transition metals. Here, using a set of first-principles calculations, we demonstrate that some of the newly added members, oxide M$_2$M$$C$_2$ (M$$= Mo, W; M$$= Ti, Zr, Hf) MXenes, are topological insulators. The nontrivial topological states of the predicted MXenes are revealed by the $Z_2$ index, which is evaluated from the parities of the occupied bands below the Fermi energy at time reversal invariant momenta, and also by the presence of the edge states. The predicted M$_2$M$$C$_2$O$_2$ MXenes show nontrivial gaps in the range of 0.041 -- 0.285 eV within the generalized gradient approximation and 0.119 -- 0.409 eV within the hybrid functional. The band gaps are induced by the spin-orbit coupling within the degenerate states with $d_{x^2-y^2}$ and $d_{xy}$ characters of M$$ and M$$, while the band inversion occurs at the $Gamma$ point among the degenerate $d_{x^2-y^2}$/$d_{xy}$ orbitals and a non-degenerate $d_{3z^2-r^2}$ orbital, which is driven by the hybridization of the neighboring orbitals. The phonon dispersion calculations find that the predicted topological insulators are structurally stable. The predicted W-based MXenes with large band gaps might be suitable candidates for many topological applications at room temperature. In addition, we study the electronic structures of thicker ordered double transition metals M$_2$M$_2$C$_3$O$_2$ (M$$= Mo, W; M$$= Ti, Zr, Hf) and find that they are nontrivial topological semimetals.
Transition metal dichalcogenides (TMDs) display a rich variety of instabilities such as spin and charge orders, Ising superconductivity and topological properties. Their physical properties can be controlled by doping in electric double-layer field-effect transistors (FET). However, for the case of single layer NbSe$_2$, FET doping is limited to $approx 1times 10^{14}$ cm$^{-2}$, while a somewhat larger charge injection can be obtained via deposition of K atoms. Here, by performing ARPES, STM, quasiparticle interference measurements, and first principles calculations we show that a misfit compound formed by sandwiching NbSe$_2$ and LaSe layers behaves as a NbSe$_2$ single layer with a rigid doping of $0.55-0.6$ electrons per Nb atom or $approx 6times 10^{14}$ cm$^{-2}$. Due to this huge doping, the $3times3$ charge density wave is replaced by a $2times2$ order with very short coherence length. As a tremendous number of different misfit compounds can be obtained by sandwiching TMDs layers with rock salt or other layers, our work paves the way to the exploration of heavily doped 2D TMDs over an unprecedented wide range of doping.
Monolayers of transition-metal dichalcogenides (TMDs) are characterized by an extraordinarily strong Coulomb interaction giving rise to tightly bound excitons with binding energies of hundreds of meV. Excitons dominate the optical response as well as the ultrafast dynamics in TMDs. As a result, a microscopic understanding of exciton dynamics is the key for technological application of these materials. In spite of this immense importance, elementary processes guiding the formation and relaxation of excitons after optical excitation of an electron-hole plasma has remained unexplored to a large extent. Here, we provide a fully quantum mechanical description of momentum- and energy-resolved exciton dynamics in monolayer molybdenum diselenide (MoSe$_2$) including optical excitation, formation of excitons, radiative recombination as well as phonon-induced cascade-like relaxation down to the excitonic ground state. Based on the gained insights, we reveal experimentally measurable features in pump-probe spectra providing evidence for the exciton relaxation cascade.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا