Do you want to publish a course? Click here

HAT-P-11: Discovery of a Second Planet and a Clue to Understanding Exoplanet Obliquities

70   0   0.0 ( 0 )
 Added by Samuel Yee
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

HAT-P-11 is a mid-K dwarf that hosts one of the first Neptune-sized planets found outside the solar system. The orbit of HAT-P-11b is misaligned with the stars spin --- one of the few known cases of a misaligned planet orbiting a star less massive than the Sun. We find an additional planet in the system based on a decade of precision radial velocity (RV) measurements from Keck/HIRES. HAT-P-11c is similar to Jupiter in its mass ($M_P sin{i} = 1.6pm0.1$ $M_J$) and orbital period ($P = 9.3^{+1.0}_{-0.5}$ year), but has a much more eccentric orbit ($e=0.60pm0.03$). In our joint modeling of RV and stellar activity, we found an activity-induced RV signal of $sim$7 m s$^{-1}$, consistent with other active K dwarfs, but significantly smaller than the 31 m s$^{-1}$ reflex motion due to HAT-P-11c. We investigated the dynamical coupling between HAT-P-11b and c as a possible explanation for HAT-P-11bs misaligned orbit, finding that planet-planet Kozai interactions cannot tilt planet bs orbit due to general relativistic precession; however, nodal precession operating on million year timescales is a viable mechanism to explain HAT-P-11bs high obliquity. This leaves open the question of why HAT-P-11c may have such a tilted orbit. At a distance of 38 pc, the HAT-P-11 system offers rich opportunities for further exoplanet characterization through astrometry and direct imaging.



rate research

Read More

247 - E. K. Simpson 2010
We present SuperWASP observations of HAT-P-14b, a hot Jupiter discovered by Torres et al. The planet was found independently by the SuperWASP team and named WASP-27b after follow-up observations had secured the discovery, but prior to the publication by Torres et al. Our analysis of HAT-P-14/WASP-27 is in good agreement with the values found by Torres et al. and we refine the parameters by combining our datasets. We also provide additional evidence against astronomical false positives. Due to the brightness of the host star, V = 10, HAT-P-14 is an attractive candidate for further characterisation observations. The planet has a high impact parameter, b = 0.907 +/- 0.004, and the primary transit is close to grazing. This could readily reveal small deviations in the orbital parameters indicating the presence of a third body in the system, which may be causing the small but significant orbital eccentricity, e = 0.095 +/- 0.011. The system geometry suggests that the planet narrowly fails to undergo a secondary eclipse. However, even a non-detection would tightly constrain the system parameters.
A possible transit of HAT-P-13c has been predicted to occur on 2010 April 28. Here we report on the results of a multi-site campaign that has been organised to detect the event. CCD photometric observations have been carried out at five observatories in five countries. We reached 30% time coverage in a 5 days interval centered on the suspected transit of HAT-P-13c. Two transits of HAT-P-13b were also observed. No transit of HAT-P-13c has been detected while the campaign was on. By a numerical experiment with 10^5 model systems we conclude that HAT-P-13c is not a transiting exoplanet with a significance level from 65% to 72%, depending on the planet parameters and the prior assumptions. We present two times of transit of HAT-P-13b ocurring at BJD 2455141.5522 +- 0.0010 and BJD 2455249.4508 +- 0.0020. The TTV of HAT-P-13b is consistent with zero within 0.001 days. The refined orbital period of HAT-P-13b is 2.916293 +- 0.000010 days.
From WASP photometry and SOPHIE radial velocities we report the discovery of WASP-40b (HAT-P-27b), a 0.6 Mjup planet that transits its 12th magnitude host star every 3.04 days. The host star is of late G-type or early K-type and likely has a metallicity greater than solar ([Fe/H] = 0.14 +/- 0.11). The planets mass and radius are typical of the known hot Jupiters, thus adding another system to the apparent pileup of transiting planets with periods near 3 to 4 days. Our parameters match those of the recent HATnet announcement of the same planet, thus giving confidence in the techniques used. We report a possible indication of stellar activity in the host star.
We report the discovery by the HATNet survey of three new transiting extrasolar planets orbiting moderately bright (V=13.2, 12.8 and 11.9) stars. The planets have orbital periods of 4.3012, 3.1290, and 4.4631 days, masses of 0.39, 0.89, and 0.49 Mjup, and radii of 1.28, 1.43, and 1.28 Rjup. The stellar hosts have masses of 0.94, 1.26, and 1.28 Msun. Each system shows significant systematic variations in its residual radial velocities indicating the possible presence of additional components. Based on its Bayesian evidence, the preferred model for HAT-P-44 consists of two planets, including the transiting component, with the outer planet having a period of 220 d and a minimum mass of 1.6 Mjup. Due to aliasing we cannot rule out an alternative solution for the outer planet having a period of 438 d and a minimum mass of 3.7 Mjup. For HAT-P-45 at present there is not enough data to justify the additional free parameters included in a multi-planet model, in this case a single-planet solution is preferred, but the required jitter of 22.5 +- 6.3 m/s is relatively high for a star of this type. For HAT-P-46 the preferred solution includes a second planet having a period of 78 d and a minimum mass of 2.0 Mjup, however the preference for this model over a single-planet model is not very strong. While substantial uncertainties remain as to the presence and/or properties of the outer planetary companions in these systems, the inner transiting planets are well characterized with measured properties that are fairly robust against changes in the assumed models for the outer planets. Continued RV monitoring is necessary to fully characterize these three planetary systems, the properties of which may have important implications for understanding the formation of hot Jupiters.
252 - G. Torres 2010
We report the discovery of HAT-P-14b, a fairly massive transiting extrasolar planet orbiting the moderately bright star GSC 3086-00152 (V = 9.98), with a period of P = 4.627669 +/- 0.000005 days. The transit is close to grazing (impact parameter 0.891 +0.007/-0.008) and has a duration of 0.0912 +/- 0.0017 days, with a reference epoch of mid transit of Tc = 2454875.28938 +/- 0.00047 (BJD). The orbit is slightly eccentric (e = 0.107 +/- 0.013), and the orientation is such that occultations are unlikely to occur. The host star is a slightly evolved mid-F dwarf with a mass of 1.386 +/- 0.045 M(Sun), a radius of 1.468 +/- 0.054 R(Sun) effective temperature 6600 +/- 90 K, and a slightly metal-rich composition corresponding to [Fe/H] = +0.11 +/- 0.08. The planet has a mass of 2.232 +/- 0.059 M(Jup) and a radius of 1.150 +/- 0.052 R(Jup), implying a mean density of 1.82 +/- 0.24 g/cm3. Its radius is well reproduced by theoretical models for the 1.3 Gyr age of the system if the planet has a heavy-element fraction of about 50 M(Earth) (7% of its total mass). The brightness, near-grazing orientation, and other properties of HAT-P-14 make it a favorable transiting system to look for changes in the orbital elements or transit timing variations induced by a possible second planet, and also to place meaningful constraints on the presence of sub-Earth mass or Earth mass exomoons, by monitoring it for transit duration variations.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا