Do you want to publish a course? Click here

HAT-P-14b: A 2.2 Jupiter-mass exoplanet transiting a bright F star

263   0   0.0 ( 0 )
 Added by Guillermo Torres
 Publication date 2010
  fields Physics
and research's language is English
 Authors G. Torres




Ask ChatGPT about the research

We report the discovery of HAT-P-14b, a fairly massive transiting extrasolar planet orbiting the moderately bright star GSC 3086-00152 (V = 9.98), with a period of P = 4.627669 +/- 0.000005 days. The transit is close to grazing (impact parameter 0.891 +0.007/-0.008) and has a duration of 0.0912 +/- 0.0017 days, with a reference epoch of mid transit of Tc = 2454875.28938 +/- 0.00047 (BJD). The orbit is slightly eccentric (e = 0.107 +/- 0.013), and the orientation is such that occultations are unlikely to occur. The host star is a slightly evolved mid-F dwarf with a mass of 1.386 +/- 0.045 M(Sun), a radius of 1.468 +/- 0.054 R(Sun) effective temperature 6600 +/- 90 K, and a slightly metal-rich composition corresponding to [Fe/H] = +0.11 +/- 0.08. The planet has a mass of 2.232 +/- 0.059 M(Jup) and a radius of 1.150 +/- 0.052 R(Jup), implying a mean density of 1.82 +/- 0.24 g/cm3. Its radius is well reproduced by theoretical models for the 1.3 Gyr age of the system if the planet has a heavy-element fraction of about 50 M(Earth) (7% of its total mass). The brightness, near-grazing orientation, and other properties of HAT-P-14 make it a favorable transiting system to look for changes in the orbital elements or transit timing variations induced by a possible second planet, and also to place meaningful constraints on the presence of sub-Earth mass or Earth mass exomoons, by monitoring it for transit duration variations.



rate research

Read More

404 - R. W. Noyes 2008
In the ongoing HATNet survey we have detected a giant planet, with radius 1.33 +/- 0.06 RJup and mass 1.06 +/- 0.12 MJup, transiting the bright (V = 10.5) star GSC 03239-00992. The planet is in a circular orbit with period 3.852985 +/- 0.000005 days and mid-transit epoch 2,454,035.67575 +/- 0.00028 (HJD). The parent star is a late F star with mass 1.29 +/- 0.06 Msun, radius 1.46 +/- 0.06 Rsun, Teff ~ 6570 +/- 80 K, [Fe=H] = -0.13 +/- 0.08 and age ~ 2.3+/-^{0.5}_{0.7}Gy. With this radius and mass, HAT-P-6b has somewhat larger radius than theoretically expected. We describe the observations and their analysis to determine physical properties of the HAT-P-6 system, and briefly discuss some implications of this finding.
215 - G. A. Bakos 2007
We report the discovery of a planet transiting a moderately bright (V = 12.00) G star, with an orbital period of 2.788491 +/-0.000025 days. From the transit light curve we determine that the radius of the planet is Rp = 1.257 +/- 0.053 RJup. HAT-P-5b has a mass of Mp = 1.06 +/- 0.11 MJup, similar to the average mass of previously-known transiting exoplanets, and a density of rho = 0.66 +/- 0.11 g cm^-3 . We find that the center of transit is Tc = 2,454,241.77663 +/- 0.00022 (HJD), and the total transit duration is 0.1217 +/- 0.0012 days.
We report the discovery of the transiting extrasolar planet HAT-P-49b. The planet transits the bright (V = 10.3) slightly evolved F-star HD 340099 with a mass of 1.54M_S and a radius of 1.83 R_S. HAT-P-49b is orbiting one of the 25 brightest stars to host a transiting planet which makes this a favorable candidate for detailed follow-up. This system is an especially strong target for Rossiter- McLaughlin follow-up due to the fast rotation of the host star, 16 km/s. The planetary companion has a period of 2.6915 d, mass of 1.73 M_J and radius of 1.41 R_J. The planetary characteristics are consistent with that of a classical hot Jupiter but we note that this is the fourth most massive star to host a transiting planet with both M_p and R_p well determined.
259 - E. K. Simpson 2010
We present SuperWASP observations of HAT-P-14b, a hot Jupiter discovered by Torres et al. The planet was found independently by the SuperWASP team and named WASP-27b after follow-up observations had secured the discovery, but prior to the publication by Torres et al. Our analysis of HAT-P-14/WASP-27 is in good agreement with the values found by Torres et al. and we refine the parameters by combining our datasets. We also provide additional evidence against astronomical false positives. Due to the brightness of the host star, V = 10, HAT-P-14 is an attractive candidate for further characterisation observations. The planet has a high impact parameter, b = 0.907 +/- 0.004, and the primary transit is close to grazing. This could readily reveal small deviations in the orbital parameters indicating the presence of a third body in the system, which may be causing the small but significant orbital eccentricity, e = 0.095 +/- 0.011. The system geometry suggests that the planet narrowly fails to undergo a secondary eclipse. However, even a non-detection would tightly constrain the system parameters.
We report the discovery of a new transiting extrasolar planet, HAT-P-55b. The planet orbits a V = 13.207 +/- 0.039 sun-like star with a mass of 1.013 +/- 0.037 solar masses, a radius of 1.011 +/- 0.036 solar radii and a metallicity of -0.03 +/- 0.08. The planet itself is a typical hot Jupiter with a period of 3.5852467 +/- 0.0000064 days, a mass of 0.582 +/- 0.056 Jupiter masses and a radius of 1.182 +/- 0.055 Jupiter radii. This discovery adds to the increasing sample of transiting planets with measured bulk densities, which is needed to put constraints on models of planetary structure and formation theories.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا