Do you want to publish a course? Click here

HAT-P-13: a multi-site campaign to detect the transit of the second planet in the system

204   0   0.0 ( 0 )
 Added by Gyula Szabo
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

A possible transit of HAT-P-13c has been predicted to occur on 2010 April 28. Here we report on the results of a multi-site campaign that has been organised to detect the event. CCD photometric observations have been carried out at five observatories in five countries. We reached 30% time coverage in a 5 days interval centered on the suspected transit of HAT-P-13c. Two transits of HAT-P-13b were also observed. No transit of HAT-P-13c has been detected while the campaign was on. By a numerical experiment with 10^5 model systems we conclude that HAT-P-13c is not a transiting exoplanet with a significance level from 65% to 72%, depending on the planet parameters and the prior assumptions. We present two times of transit of HAT-P-13b ocurring at BJD 2455141.5522 +- 0.0010 and BJD 2455249.4508 +- 0.0020. The TTV of HAT-P-13b is consistent with zero within 0.001 days. The refined orbital period of HAT-P-13b is 2.916293 +- 0.000010 days.



rate research

Read More

370 - Andras Pal 2011
In this Letter we present observations of recent HAT-P-13b transits. The combined analysis of published and newly obtained transit epochs shows evidence for significant transit timing variations since the last publicly available ephemerides. Variation of transit timings result in a sudden switch of transit times. The detected full range of TTV spans ~0.015 days, which is significantly more than the known TTV events exhibited by hot Jupiters. If we have detected a periodic process, its period should be at least ~3 years because there are no signs of variations in the previous observations. This argument makes unlikely that the measured TTV is due to perturbations by HAT-P-13c.
We present the results of 45 transit observations obtained for the transiting exoplanet HAT-P-32b. The transits have been observed using several telescopes mainly throughout the YETI network. In 25 cases, complete transit light curves with a timing precision better than $1.4:$min have been obtained. These light curves have been used to refine the system properties, namely inclination $i$, planet-to-star radius ratio $R_textrm{p}/R_textrm{s}$, and the ratio between the semimajor axis and the stellar radius $a/R_textrm{s}$. First analyses by Hartman et al. (2011) suggest the existence of a second planet in the system, thus we tried to find an additional body using the transit timing variation (TTV) technique. Taking also literature data points into account, we can explain all mid-transit times by refining the linear ephemeris by 21ms. Thus we can exclude TTV amplitudes of more than $sim1.5$min.
HAT-P-11 is a mid-K dwarf that hosts one of the first Neptune-sized planets found outside the solar system. The orbit of HAT-P-11b is misaligned with the stars spin --- one of the few known cases of a misaligned planet orbiting a star less massive than the Sun. We find an additional planet in the system based on a decade of precision radial velocity (RV) measurements from Keck/HIRES. HAT-P-11c is similar to Jupiter in its mass ($M_P sin{i} = 1.6pm0.1$ $M_J$) and orbital period ($P = 9.3^{+1.0}_{-0.5}$ year), but has a much more eccentric orbit ($e=0.60pm0.03$). In our joint modeling of RV and stellar activity, we found an activity-induced RV signal of $sim$7 m s$^{-1}$, consistent with other active K dwarfs, but significantly smaller than the 31 m s$^{-1}$ reflex motion due to HAT-P-11c. We investigated the dynamical coupling between HAT-P-11b and c as a possible explanation for HAT-P-11bs misaligned orbit, finding that planet-planet Kozai interactions cannot tilt planet bs orbit due to general relativistic precession; however, nodal precession operating on million year timescales is a viable mechanism to explain HAT-P-11bs high obliquity. This leaves open the question of why HAT-P-11c may have such a tilted orbit. At a distance of 38 pc, the HAT-P-11 system offers rich opportunities for further exoplanet characterization through astrometry and direct imaging.
We report the discovery by the HATNet survey of three new transiting extrasolar planets orbiting moderately bright (V=13.2, 12.8 and 11.9) stars. The planets have orbital periods of 4.3012, 3.1290, and 4.4631 days, masses of 0.39, 0.89, and 0.49 Mjup, and radii of 1.28, 1.43, and 1.28 Rjup. The stellar hosts have masses of 0.94, 1.26, and 1.28 Msun. Each system shows significant systematic variations in its residual radial velocities indicating the possible presence of additional components. Based on its Bayesian evidence, the preferred model for HAT-P-44 consists of two planets, including the transiting component, with the outer planet having a period of 220 d and a minimum mass of 1.6 Mjup. Due to aliasing we cannot rule out an alternative solution for the outer planet having a period of 438 d and a minimum mass of 3.7 Mjup. For HAT-P-45 at present there is not enough data to justify the additional free parameters included in a multi-planet model, in this case a single-planet solution is preferred, but the required jitter of 22.5 +- 6.3 m/s is relatively high for a star of this type. For HAT-P-46 the preferred solution includes a second planet having a period of 78 d and a minimum mass of 2.0 Mjup, however the preference for this model over a single-planet model is not very strong. While substantial uncertainties remain as to the presence and/or properties of the outer planetary companions in these systems, the inner transiting planets are well characterized with measured properties that are fairly robust against changes in the assumed models for the outer planets. Continued RV monitoring is necessary to fully characterize these three planetary systems, the properties of which may have important implications for understanding the formation of hot Jupiters.
249 - N. P. Gibson 2009
We present seven light curves of the exoplanet system HAT-P-3, taken as part of a transit timing program using the RISE instrument on the Liverpool Telescope. The light curves are analysed using a Markov-Chain Monte-Carlo algorithm to update the parameters of the system. The inclination is found to be i = 86.75^{+0.22}_{-0.21} deg, the planet-star radius ratio to be R_p/R_star = 0.1098^{+0.0010}_{-0.0012}, and the stellar radius to be R_star = 0.834^{+0.018}_{-0.026} R_sun, consistent with previous results but with a significant improvement in the precision. Central transit times and uncertainties for each light curve are also determined, and a residual permutation algorithm used as an independent check on the errors. The transit times are found to be consistent with a linear ephemeris, and a new ephemeris is calculated as T_c(0) = 2454856.70118 +- 0.00018 HJD and P = 2.899738 +- 0.000007 days. Model timing residuals are fitted to the measured timing residuals to place upper mass limits for a hypothetical perturbing planet as a function of the period ratio. These show that we have probed for planets with masses as low as 0.33 M_earth and 1.81 M_earth in the interior and exterior 2:1 resonances, respectively, assuming the planets are initially in circular orbits.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا