Do you want to publish a course? Click here

Global phase space structures in a model of passive descent

64   0   0.0 ( 0 )
 Added by Shane Ross
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Even the most simplified models of falling and gliding bodies exhibit rich nonlinear dynamical behavior. Taking a global view of the dynamics of one such model, we find an attracting invariant manifold that acts as the dominant organizing feature of trajectories in velocity space. This attracting manifold captures the final, slowly changing phase of every passive descent, providing a higher-dimensional analogue to the concept of terminal velocity, the terminal velocity manifold. Within the terminal velocity manifold in extended phase space, there is an equilibrium submanifold with equilibria of alternating stability type, with different stability basins. In this work, we present theoretical and numerical methods for approximating the terminal velocity manifold and discuss ways to approximate falling and gliding motion in terms of these underlying phase space structures.



rate research

Read More

Phase space structures such as dividing surfaces, normally hyperbolic invariant manifolds, their stable and unstable manifolds have been an integral part of computing quantitative results such as transition fraction, stability erosion in multi-stable mechanical systems, and reaction rates in chemical reaction dynamics. Thus, methods that can reveal their geometry in high dimensional phase space (4 or more dimensions) need to be benchmarked by comparing with known results. In this study, we assess the capability of one such method called Lagrangian descriptor for revealing the types of high dimensional phase space structures associated with index-1 saddle in Hamiltonian systems. The Lagrangian descriptor based approach is applied to two and three degree-of-freedom quadratic Hamiltonian systems where the high dimensional phase space structures are known, that is as closed-form analytical expressions. This leads to a direct comparison of features in the Lagrangian descriptor plots and the phase space structures intersection with an isoenergetic two-dimensional surface and hence provides a validation of the approach.
This Response is concerned with the recent Comment of Ruiz-Herrera, Limitations of the Method of Lagrangian Descriptors [arXiv:1510.04838], criticising the method of Lagrangian Descriptors. In spite of the significant body of literature asserting the contrary, Ruiz-Herrera claims that the method fails to reveal the presence of stable and unstable manifolds of hyperbolic trajectories in incompressible systems and in almost all linear systems. He supports this claim by considering the method of Lagrangian descriptors applied to three specific examples. However in this response we show that Ruiz-Herrera does not understand the proper application and interpretation of the method and, when correctly applied, the method beautifully and unambiguously detects the stable and unstable manifolds of the hyperbolic trajectories in his examples.
Recent studies have found an unusual way of dissociation in formaldehyde. It can be characterized by a hydrogen atom that separates from the molecule, but instead of dissociating immediately it roams around the molecule for a considerable amount of time and extracts another hydrogen atom from the molecule prior to dissociation. This phenomenon has been coined roaming and has since been reported in the dissociation of a number of other molecules. In this paper we investigate roaming in Chesnavichs CH$_4^+$ model. During dissociation the free hydrogen must pass through three phase space bottleneck for the classical motion, that can be shown to exist due to unstable periodic orbits. None of these orbits is associated with saddle points of the potential energy surface and hence related to transition states in the usual sense. We explain how the intricate phase space geometry influences the shape and intersections of invariant manifolds that form separatrices, and establish the impact of these phase space structures on residence times and rotation numbers. Ultimately we use this knowledge to attribute the roaming phenomenon to particular heteroclinic intersections.
Complementary to existing applications of Lagrangian descriptors as an exploratory method, we use Lagrangian descriptors to find invariant manifolds in a system where some invariant structures have already been identified. In this case we use the parametrisation of a periodic orbit to construct a Lagrangian descriptor that will be locally minimised on its invariant manifolds. The procedure is applicable (but not limited) to systems with highly unstable periodic orbits, such as the isokinetic Chesnavich CH4+ model subject to a Hamiltonian isokinetic theromostat. Aside from its low computational requirements, the method enables us to study the invariant structures responsible for roaming in the isokinetic Chesnavich CH4+ model.
The Cahn--Hilliard equation is a classic model of phase separation in binary mixtures that exhibits spontaneous coarsening of the phases. We study the Cahn--Hilliard equation with an imposed advection term in order to model the stirring and eventual mixing of the phases. The main result is that if the imposed advection is sufficiently mixing then no phase separation occurs, and the solution instead converges exponentially to a homogeneous mixed state. The mixing effectiveness of the imposed drift is quantified in terms of the dissipation time of the associated advection-hyperdiffusion equation, and we produce examples of velocity fields with a small dissipation time. We also study the relationship between this quantity and the dissipation time of the standard advection-diffusion equation.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا