No Arabic abstract
Recent studies have found an unusual way of dissociation in formaldehyde. It can be characterized by a hydrogen atom that separates from the molecule, but instead of dissociating immediately it roams around the molecule for a considerable amount of time and extracts another hydrogen atom from the molecule prior to dissociation. This phenomenon has been coined roaming and has since been reported in the dissociation of a number of other molecules. In this paper we investigate roaming in Chesnavichs CH$_4^+$ model. During dissociation the free hydrogen must pass through three phase space bottleneck for the classical motion, that can be shown to exist due to unstable periodic orbits. None of these orbits is associated with saddle points of the potential energy surface and hence related to transition states in the usual sense. We explain how the intricate phase space geometry influences the shape and intersections of invariant manifolds that form separatrices, and establish the impact of these phase space structures on residence times and rotation numbers. Ultimately we use this knowledge to attribute the roaming phenomenon to particular heteroclinic intersections.
Phase space structures such as dividing surfaces, normally hyperbolic invariant manifolds, their stable and unstable manifolds have been an integral part of computing quantitative results such as transition fraction, stability erosion in multi-stable mechanical systems, and reaction rates in chemical reaction dynamics. Thus, methods that can reveal their geometry in high dimensional phase space (4 or more dimensions) need to be benchmarked by comparing with known results. In this study, we assess the capability of one such method called Lagrangian descriptor for revealing the types of high dimensional phase space structures associated with index-1 saddle in Hamiltonian systems. The Lagrangian descriptor based approach is applied to two and three degree-of-freedom quadratic Hamiltonian systems where the high dimensional phase space structures are known, that is as closed-form analytical expressions. This leads to a direct comparison of features in the Lagrangian descriptor plots and the phase space structures intersection with an isoenergetic two-dimensional surface and hence provides a validation of the approach.
Chesnavichs model Hamiltonian for the reaction CH$_4^+ rightarrow$ CH$_3^+$ is known to exhibit a range of interesting dynamical phenomena including roaming. The model system consists of two parts: a rigid, symmetric top representing the CH$_3^+$ ion and a free H atom. We study roaming in this model with focus on the evolution of geometrical features of the invariant manifolds in phase space that govern roaming under variations of the mass of the free atom m and a parameter a that couples radial and angular motion. In addition, we establish an upper bound on the prominence of roaming in Chesnavichs model. The bound highlights the intricacy of roaming as a type of dynamics on the verge between isomerisation and nonreactivity as it relies on generous access to the potential wells to allow reactions as well as a prominent area of high potential that aids sufficient transfer of energy between the degrees of freedom to prevent isomerisation.
Complementary to existing applications of Lagrangian descriptors as an exploratory method, we use Lagrangian descriptors to find invariant manifolds in a system where some invariant structures have already been identified. In this case we use the parametrisation of a periodic orbit to construct a Lagrangian descriptor that will be locally minimised on its invariant manifolds. The procedure is applicable (but not limited) to systems with highly unstable periodic orbits, such as the isokinetic Chesnavich CH4+ model subject to a Hamiltonian isokinetic theromostat. Aside from its low computational requirements, the method enables us to study the invariant structures responsible for roaming in the isokinetic Chesnavich CH4+ model.
A model Hamiltonian for the reaction CH$_4^+ rightarrow$ CH$_3^+$ + H, parametrized to exhibit either early or late inner transition states, is employed to investigate the dynamical characteristics of the roaming mechanism. Tight/loose transition states and conventional/roaming reaction pathways are identified in terms of time-invariant objects in phase space. These are dividing surfaces associated with normally hyperbolic invariant manifolds (NHIMs). For systems with two degrees of freedom NHIMS are unstable periodic orbits which, in conjunction with their stable and unstable manifolds, unambiguously define the (locally) non-recrossing dividing surfaces assumed in statistical theories of reaction rates. By constructing periodic orbit continuation/bifurcation diagrams for two values of the potential function parameter corresponding to late and early transition states, respectively, and using the total energy as another parameter, we dynamically assign different regions of phase space to reactants and products as well as to conventional and roaming reaction pathways. The classical dynamics of the system are investigated by uniformly sampling trajectory initial conditions on the dividing surfaces. Trajectories are classified into four different categories: direct reactive and non reactive trajectories,which lead to the formation of molecular and radical products respectively, and roaming reactive and non reactive orbiting trajectories, which represent alternative pathways to form molecular and radical products. By analysing gap time distributions at several energies we demonstrate that the phase space structure of the roaming region, which is strongly influenced by non-linear resonances between the two degrees of freedom, results in nonexponential (nonstatistical) decay.
Experimental studies of protein-pattern formation have stimulated new interest in the dynamics of reaction-diffusion systems. However, a comprehensive theoretical understanding of the dynamics of such highly nonlinear, spatially extended systems is still missing. Here we show how a description in phase space, which has proven invaluable in shaping our intuition about the dynamics of nonlinear ordinary differential equations, can be generalized to mass-conserving reaction-diffusion (McRD) systems. We present a comprehensive analysis of two-component McRD systems, which serve as paradigmatic minimal systems that encapsulate the core principles and concepts of the local equilibria theory introduced in the paper. The key insight underlying this theory is that shifting local (reactive) equilibria -- controlled by the local total density -- give rise to concentration gradients that drive diffusive redistribution of total density. We show how this dynamic interplay can be embedded in the phase plane of the reaction kinetics in terms of simple geometric objects: the reactive nullcline and the diffusive flux-balance subspace. On this phase-space level, physical insight can be gained from geometric criteria and graphical constructions. The effects of nonlinearities on the global dynamics are simply encoded in the curved shape of the reactive nullcline. In particular, we show that the pattern-forming `Turing instability in McRD systems is a mass-redistribution instability, and that the features and bifurcations of patterns can be characterized based on regional dispersion relations, associated to distinct spatial regions (plateaus and interfaces) of the patterns. In an extensive outlook section, we detail concrete approaches to generalize local equilibria theory in several directions, including systems with more than two-components, weakly-broken mass conservation, and active matter systems.