Do you want to publish a course? Click here

Critical exponents of invariant random subgroups in negative curvature

74   0   0.0 ( 0 )
 Added by Arie Levit
 Publication date 2018
  fields
and research's language is English




Ask ChatGPT about the research

Let $X$ be a proper geodesic Gromov hyperbolic metric space and let $G$ be a cocompact group of isometries of $X$ admitting a uniform lattice. Let $d$ be the Hausdorff dimension of the Gromov boundary $partial X$. We define the critical exponent $delta(mu)$ of any discrete invariant random subgroup $mu$ of the locally compact group $G$ and show that $delta(mu) > frac{d}{2}$ in general and that $delta(mu) = d$ if $mu$ is of divergence type. Whenever $G$ is a rank-one simple Lie group with Kazhdans property $(T)$ it follows that an ergodic invariant random subgroup of divergence type is a lattice. One of our main tools is a maximal ergodic theorem for actions of hyperbolic groups due to Bowen and Nevo.



rate research

Read More

We classify the ergodic invariant random subgroups of block-diagonal limits of symmetric groups in the cases when the groups are simple and the associated dimension groups have finite dimensional state spaces. These block-diagonal limits arise as the transformation groups (full groups) of Bratteli diagrams that preserve the cofinality of infinite paths in the diagram. Given a simple full group $G$ admitting only a finite number of ergodic measures on the path-space $X$ of the associated Bratteli digram, we prove that every non-Dirac ergodic invariant random subgroup of $G$ arises as the stabilizer distribution of the diagonal action on $X^n$ for some $ngeq 1$. As a corollary, we establish that every group character $chi$ of $G$ has the form $chi(g) = Prob(gin K)$, where $K$ is a conjugation-invariant random subgroup of $G$.
We prove that all invariant random subgroups of the lamplighter group $L$ are co-sofic. It follows that $L$ is permutation stable, providing an example of an infinitely presented such a group. Our proof applies more generally to all permutational wreath products of finitely generated abelian groups. We rely on the pointwise ergodic theorem for amenable groups.
Let $G$ be a higher rank semisimple linear algebraic group over a non-Archimedean local field. The simplicial complexes corresponding to any sequence of pairwise non-conjugate irreducible lattices in $G$ are Benjamini-Schramm convergent to the Bruhat-Tits building. Convergence of the relative Plancherel measures and normalized Betti numbers follows. This extends the work of Abert, Bergeron, Biringer, Gelander, Nokolov, Raimbault and Samet from real Lie groups to linear groups over arbitrary local fields. Along the way, various results concerning Invariant Random Subgroups and in particular a variant of the classical Borel density theorem are also extended.
We show that if $G_1$ and $G_2$ are non-solvable groups, then no $C^{1,tau}$ action of $(G_1times G_2)*mathbb{Z}$ on $S^1$ is faithful for $tau>0$. As a corollary, if $S$ is an orientable surface of complexity at least three then the critical regularity of an arbitrary finite index subgroup of the mapping class group $mathrm{Mod}(S)$ with respect to the circle is at most one, thus strengthening a result of the first two authors with Baik.
This is a survey of results on random group presentations, and on random subgroups of certain fixed groups. Being a survey, this paper does not contain new results, but it offers a synthetic view of a part of this very active field of research.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا