Do you want to publish a course? Click here

Random presentations and random subgroups: a survey

81   0   0.0 ( 0 )
 Added by Pascal Weil
 Publication date 2017
  fields
and research's language is English




Ask ChatGPT about the research

This is a survey of results on random group presentations, and on random subgroups of certain fixed groups. Being a survey, this paper does not contain new results, but it offers a synthetic view of a part of this very active field of research.



rate research

Read More

Let $G$ be a higher rank semisimple linear algebraic group over a non-Archimedean local field. The simplicial complexes corresponding to any sequence of pairwise non-conjugate irreducible lattices in $G$ are Benjamini-Schramm convergent to the Bruhat-Tits building. Convergence of the relative Plancherel measures and normalized Betti numbers follows. This extends the work of Abert, Bergeron, Biringer, Gelander, Nokolov, Raimbault and Samet from real Lie groups to linear groups over arbitrary local fields. Along the way, various results concerning Invariant Random Subgroups and in particular a variant of the classical Borel density theorem are also extended.
Asymptotic properties of finitely generated subgroups of free groups, and of finite group presentations, can be considered in several fashions, depending on the way these objects are represented and on the distribution assumed on these representations: here we assume that they are represented by tuples of reduced words (generators of a subgroup) or of cyclically reduced words (relators). Classical models consider fixed size tuples of words (e.g. the few-generator model) or exponential size tuples (e.g. Gromovs density model), and they usually consider that equal length words are equally likely. We generalize both the few-generator and the density models with probabilistic schemes that also allow variability in the size of tuples and non-uniform distributions on words of a given length.Our first results rely on a relatively mild prefix-heaviness hypothesis on the distributions, which states essentially that the probability of a word decreases exponentially fast as its length grows. Under this hypothesis, we generalize several classical results: exponentially generically a randomly chosen tuple is a basis of the subgroup it generates, this subgroup is malnormal and the tuple satisfies a small cancellation property, even for exponential size tuples. In the special case of the uniform distribution on words of a given length, we give a phase transition theorem for the central tree property, a combinatorial property closely linked to the fact that a tuple freely generates a subgroup. We then further refine our results when the distribution is specified by a Markovian scheme, and in particular we give a phase transition theorem which generalizes the classical results on the densities up to which a tuple of cyclically reduced words chosen uniformly at random exponentially generically satisfies a small cancellation property, and beyond which it presents a trivial group.
Let $X$ be a proper geodesic Gromov hyperbolic metric space and let $G$ be a cocompact group of isometries of $X$ admitting a uniform lattice. Let $d$ be the Hausdorff dimension of the Gromov boundary $partial X$. We define the critical exponent $delta(mu)$ of any discrete invariant random subgroup $mu$ of the locally compact group $G$ and show that $delta(mu) > frac{d}{2}$ in general and that $delta(mu) = d$ if $mu$ is of divergence type. Whenever $G$ is a rank-one simple Lie group with Kazhdans property $(T)$ it follows that an ergodic invariant random subgroup of divergence type is a lattice. One of our main tools is a maximal ergodic theorem for actions of hyperbolic groups due to Bowen and Nevo.
We prove that all invariant random subgroups of the lamplighter group $L$ are co-sofic. It follows that $L$ is permutation stable, providing an example of an infinitely presented such a group. Our proof applies more generally to all permutational wreath products of finitely generated abelian groups. We rely on the pointwise ergodic theorem for amenable groups.
We classify the ergodic invariant random subgroups of block-diagonal limits of symmetric groups in the cases when the groups are simple and the associated dimension groups have finite dimensional state spaces. These block-diagonal limits arise as the transformation groups (full groups) of Bratteli diagrams that preserve the cofinality of infinite paths in the diagram. Given a simple full group $G$ admitting only a finite number of ergodic measures on the path-space $X$ of the associated Bratteli digram, we prove that every non-Dirac ergodic invariant random subgroup of $G$ arises as the stabilizer distribution of the diagonal action on $X^n$ for some $ngeq 1$. As a corollary, we establish that every group character $chi$ of $G$ has the form $chi(g) = Prob(gin K)$, where $K$ is a conjugation-invariant random subgroup of $G$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا