We prove that all invariant random subgroups of the lamplighter group $L$ are co-sofic. It follows that $L$ is permutation stable, providing an example of an infinitely presented such a group. Our proof applies more generally to all permutational wreath products of finitely generated abelian groups. We rely on the pointwise ergodic theorem for amenable groups.
In this paper, we compute an upper bound for the Dehn function of a finitely presented metabelian group. In addition, we prove that the same upper bound works for the relative Dehn function of a finitely generated metabelian group. We also show that every wreath product of a free abelian group of finite rank with a finitely generated abelian group can be embedded into a metabelian group with exponential Dehn function.
We classify the ergodic invariant random subgroups of block-diagonal limits of symmetric groups in the cases when the groups are simple and the associated dimension groups have finite dimensional state spaces. These block-diagonal limits arise as the transformation groups (full groups) of Bratteli diagrams that preserve the cofinality of infinite paths in the diagram. Given a simple full group $G$ admitting only a finite number of ergodic measures on the path-space $X$ of the associated Bratteli digram, we prove that every non-Dirac ergodic invariant random subgroup of $G$ arises as the stabilizer distribution of the diagonal action on $X^n$ for some $ngeq 1$. As a corollary, we establish that every group character $chi$ of $G$ has the form $chi(g) = Prob(gin K)$, where $K$ is a conjugation-invariant random subgroup of $G$.
We construct a finitely presented group with infinitely many non-homeomorphic asymptotic cones. We also show that the existence of cut points in asymptotic cones of finitely presented groups does, in general, depend on the choice of scaling constants and ultrafilters.
We study the geometry of infinitely presented groups satisfying the small cancelation condition C(1/8), and define a standard decomposition (called the criss-cross decomposition) for the elements of such groups. We use it to prove the Rapid Decay property for groups with the stronger small cancelation property C(1/10). As a consequence, the Metric Approximation Property holds for the reduced C*-algebra and for the Fourier algebra of such groups. Our method further implies that the kernel of the comparison map between the bounded and the usual group cohomology in degree 2 has a basis of power continuum. The present work can be viewed as a first non-trivial step towards a systematic investigation of direct limits of hyperbolic groups.
We describe a novel algorithm for random sampling of freely reduced words equal to the identity in a finitely presented group. The algorithm is based on Metropolis Monte Carlo sampling. The algorithm samples from a stretched Boltzmann distribution begin{align*}pi(w) &= (|w|+1)^{alpha} beta^{|w|} cdot Z^{-1} end{align*} where $|w|$ is the length of a word $w$, $alpha$ and $beta$ are parameters of the algorithm, and $Z$ is a normalising constant. It follows that words of the same length are sampled with the same probability. The distribution can be expressed in terms of the cogrowth series of the group, which then allows us to relate statistical properties of words sampled by the algorithm to the cogrowth of the group, and hence its amenability. We have implemented the algorithm and applied it to several group presentations including the Baumslag-Solitar groups, some free products studied by Kouksov, a finitely presented amenable group that is not subexponentially amenable (based on the basilica group), and Richard Thompsons group $F$.