Do you want to publish a course? Click here

Determining the effects of clumping and porosity on the chemistry in a non-uniform AGB outflow

390   0   0.0 ( 0 )
 Added by Marie Van de Sande
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

(abridged) In the inner regions of AGB outflows, several molecules have been detected with abundances much higher than those predicted from thermodynamic equilibrium (TE) chemical models. The presence of the majority of these species can be explained by shock-induced non-TE chemical models, where shocks caused by the pulsating star take the chemistry out of TE in the inner region. Moreover, a non-uniform density structure has been detected in several AGB outflows. A detailed parameter study on the quantitative effects of a non-homogeneous outflow has so far not been performed. We implement a porosity formalism for treating the increased leakage of light associated with radiation transport through a clumpy, porous medium. The effects from the altered UV radiation field penetration on the chemistry, accounting also for the increased reaction rates of two-body processes in the overdense clumps, are examined. We present a parameter study of the effect of clumping and porosity on the chemistry throughout the outflow. Both the higher density within the clumps and the increased UV radiation field penetration have an important impact on the chemistry, as they both alter the chemical pathways. The increased amount of UV radiation in the inner region leads to photodissociation of parent species, releasing the otherwise deficient elements. We find an increased abundance in the inner region of all species not expected to be present assuming TE chemistry, such as HCN in O-rich outflows, H$_2$O in C-rich outflows, and NH$_3$ in both. Outflows whose clumps have a large overdensity and that are very porous to the interstellar UV radiation field yield abundances comparable to those observed in O- and C-rich outflows for most of the unexpected species investigated. The inner wind abundances of H$_2$O in C-rich outflows and of NH$_3$ in O- and C-rich outflows are however underpredicted.

rate research

Read More

Chemical modelling of AGB outflows is typically focused on either non-thermodynamic equilibrium chemistry in the inner region or photon-driven chemistry in the outer region. We include, for the first time, a comprehensive dust-gas chemistry in our AGB outflow chemical kinetics model, including both dust-gas interactions and grain-surface chemistry. The dust is assumed to have formed in the inner region, and follows an interstellar-like dust-size distribution. Using radiative transfer modelling, we obtain dust temperature profiles for different dust types in an O-rich and a C-rich outflow. We calculate a grid of models, sampling different outflow densities, drift velocities between the dust and gas, and dust types. Dust-gas chemistry can significantly affect the gas-phase composition, depleting parent and daughter species and increasing the abundance of certain daughter species via grain-surface formation followed by desorption/sputtering. Its influence depends on four factors: outflow density, dust temperature, initial composition, and drift velocity. The largest effects are for higher density outflows with cold dust and O-rich parent species, as these species generally have a larger binding energy. At drift velocities larger than $sim 10$ km s$^{-1}$, ice mantles undergo sputtering; however, they are not fully destroyed. Models with dust-gas chemistry can better reproduce the observed depletion of species in O-rich outflows. When including colder dust in the C-rich outflows and adjusting the binding energy of CS, the depletion in C-rich outflows is also better reproduced. To best interpret high-resolution molecular line observations from AGB outflows, dust-gas interactions are needed in chemical kinetics models.
The recent detection of gas-phase methanol (CH$_3$OH) lines in the disc of TW Hya by Walsh et al. provided the first observational constraints on the complex O-bearing organic content in protoplanetary discs. The emission has a ring-like morphology, with a peak at $sim 30-50$ au and an inferred column density of $sim 3-6times10^{12}$ cm$^{-2}$. A low CH$_3$OH fractional abundance of $sim 0.3-4times 10^{-11}$ (with respect to H$_2$) is derived, depending on the assumed vertical location of the CH$_3$OH molecular layer. In this study, we use a thermo-chemical model of the TW Hya disc, coupled with the ALCHEMIC gas-grain chemical model, assuming laboratory-motivated, fast diffusivities of the surface molecules to interpret the CH$_3$OH detection. Based on this disc model, we performed radiative transfer calculations with the LIME code and simulations of the observations with the CASA simulator. We found that our model allows to reproduce the observations well. The CH$_3$OH emission in our model appears as a ring with radius of $sim60$ au. Synthetic and observed line flux densities are equal within the rms noise level of observations. The synthetic CH$_3$OH spectra calculated assuming local thermodynamic equilibrium (LTE) can differ by up to a factor of 3.5 from the non-LTE spectra. For the strongest lines, the differences between LTE and non-LTE flux densities are very small and practically negligible. Variations in the diffusivity of the surface molecules can lead to variations of the CH$_3$OH abundance and, therefore, line flux densities by an order of magnitude.
To explain the properties of dust in the interstellar medium (ISM), the presence of a refractory organic mantle is necessary. The outflows of AGB stars are among the main contributors of stellar dust to the ISM. We present the first study of the refractory organic contribution of AGB stars to the ISM. Based on laboratory experiments, we included a new reaction in our extended chemical kinetics model: the photoprocessing of volatile complex ices into inert refractory organic material. The refractory organic feedback of AGB outflows to the ISM is estimated using observationally motivated parent species and grids of models of C-rich and O-rich outflows. Refractory organic material is mainly inherited from the gas phase through accretion onto the dust and subsequent photoprocessing. Grain-surface chemistry, initiated by photodissociation of ices, produces only a minor part and takes place in a sub-monolayer regime in almost all outflows. The formation of refractory organic material increases with outflow density and depends on the initial gas-phase composition. While O-rich dust is negligibly covered by refractory organics, C-rich dust has an average coverage of $3-9%$, but can be as high as $8-22%$. Although C-rich dust does not enter the ISM bare, its average coverage is too low to influence its evolution in the ISM or significantly contribute to the coverage of interstellar dust. This study opens up questions on the coverage of other dust-producing environments. It highlights the need for an improved understanding of dust formation and for models specific to density structures within the outflow.
AGB stars are, together with supernovae, the main contributors of stellar dust to the interstellar medium (ISM). Dust grains formed by AGB stars are thought to be large. However, as dust nucleation and growth within their outflows are still not understood, the dust-grain size distribution (GSD) is unknown. This is an important uncertainty regarding our knowledge of the chemical and physical history of interstellar dust, as AGB dust forms $sim$ 70% of the starting point of its evolution. We expand on our chemical kinetics model, which uniquely includes a comprehensive dust-gas chemistry. The GSD is now allowed to deviate from the commonly assumed canonical Mathis et al. (1977) distribution. We find that the specific GSD can significantly influence the dust-gas chemistry within the outflow. Our results show that the level of depletion of gas-phase species depends on the average grain surface area of the GSD. Gas-phase abundance profiles and their possible depletions can be retrieved from observations of molecular emission lines when using a range of transitions. Due to degeneracies within the prescription of GSD, specific parameters cannot be retrieved, only (a lower limit to) the average grain surface area. Nonetheless, this can discriminate between dust composed of predominantly large or small grains. We show that when combined with other observables such as the spectral energy distribution and polarised light, depletion levels from molecular gas-phase abundance profiles can constrain the elusive GSD of the dust delivered to the ISM by AGB outflows.
Cosmic dusts are mostly responsible for polarization of the light that we ob- serve from astrophysical objects. They also lead to color-extinction, thermal re- emission and other scattering related phenomena. Dusts are made of small particles which are characterised by their size (radius), composition (matter), and structure (morphology, including porosity). In the present work, we address the question of the role of the dust particle porosity on light polarization and color, using Discrete Dipole Approximation (DDA) light scattering code. To answer this question, we developed an algorithm to generate solid particles of arbitrary values of porosity. In brief, the model considers a given homogeneous structure made of touching dipoles. The dipoles are randomly removed one by one, such that the remaining structure remains connected. We stop the removal process when the desired poros- ity is obtained. Then we study the optical properties of the porous particle. That way, we show how the proper value of the porosity affects the polarization and color of the light scattered by these porous particles. In addition to polarization, porosity has important effects on photometric color. Considering an important application, we emphasize the possible role of the porosity of the cometary dust particles on polarization and color of the light scattered by cometary coma.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا