Do you want to publish a course? Click here

Exact spectral asymptotics of fractional processes

79   0   0.0 ( 0 )
 Added by Pavel Chigansky
 Publication date 2018
  fields
and research's language is English




Ask ChatGPT about the research

Eigenproblems frequently arise in theory and applications of stochastic processes, but only a few have explicit solutions. Those which do, are usually solved by reduction to the generalized Sturm--Liouville theory for differential operators. This includes the Brownian motion and a whole class of processes, which derive from it by means of linear transformations. The more general eigenproblem for the {em fractional} Brownian motion (f.B.m.) is not solvable in closed form, but the exact asymptotics of its eigenvalues and eigenfunctions can be obtained, using a method based on analytic properties of the Laplace transform. In this paper we consider two processes closely related to the f.B.m.: the fractional Ornstein--Uhlenbeck process and the integrated fractional Brownian motion. While both derive from the f.B.m. by simple linear transformations, the corresponding eigenproblems turn out to be much more complex and their asymptotic structure exhibits new effects.



rate research

Read More

Many results in the theory of Gaussian processes rely on the eigenstructure of the covariance operator. However, eigenproblems are notoriously hard to solve explicitly and closed form solutions are known only in a limited number of cases. In this paper we set up a framework for the spectral analysis of the fractional type covariance operators, corresponding to an important family of processes, which includes the fractional Brownian motion and its noise. We obtain accurate asymptotic approximations for the eigenvalues and the eigenfunctions. Our results provide a key to several problems, whose solution is long known in the standard Brownian case, but was missing in the more general fractional setting. This includes computation of the exact limits of $L^2$-small ball probabilities and asymptotic analysis of singularly perturbed integral equations, arising in mathematical physics and applied probability.
In this paper, we provide the spectral decomposition in Hilbert space of the $mathcal{C}_0$-semigroup $P$ and its adjoint $hatP$ having as generator, respectively, the Caputo and the right-sided Riemann-Liouville fractional derivatives of index $1<alpha<2$. These linear operators, which are non-local and non-self-adjoint, appear in many recent studies in applied mathematics and also arise as the infinitesimal generators of some substantial processes such as the reflected spectrally negative $alpha$-stable process. Our approach relies on intertwining relations that we establish between these semigroups and the semigroup of a Bessel type process whose generator is a self-adjoint second order differential operator. In particular, from this commutation relation, we characterize the positive real axis as the continuous point spectrum of $P$ and provide a power series representation of the corresponding eigenfunctions. We also identify the positive real axis as the residual spectrum of the adjoint operator $hatP$ and elucidates its role in the spectral decomposition of these operators. By resorting to the concept of continuous frames, we proceed by investigating the domain of the spectral operators and derive two representations for the heat kernels of these semigroups. As a by-product, we also obtain regularity properties for these latter and also for the solution of the associated Cauchy problem.
The current research of fractional Sturm-Liouville boundary value problems focuses on the qualitative theory and numerical methods, and much progress has been recently achieved in both directions. The objective of this paper is to explore a different route, namely, construction of explicit asymptotic approximations for the solutions. As a study case, we consider a problem with left and right Riemann-Liouville derivatives, for which our analysis yields asymptotically sharp estimates for the sequence of eigenvalues and eigenfunctions.
The Ornstein-Uhlenbeck process can be seen as a paradigm of a finite-variance and statistically stationary rough random walk. Furthermore, it is defined as the unique solution of a Markovian stochastic dynamics and shares the same local regularity as the one of the Brownian motion. Based on previous works, we propose to include in the framework of one of its generalization, the so-called fractional Ornstein-Uhlenbeck process, some Multifractal corrections, using a Gaussian Multiplicative Chaos. The aforementioned process, called a Multifractal fractional Ornstein-Uhlenbeck process, is a statistically stationary finite-variance process. Its underlying dynamics is non-Markovian, although non-anticipating and causal. The numerical scheme and theoretical approach are based on a regularization procedure, that gives a meaning to this dynamical evolution, which unique solution converges towards a well-behaved stochastic process.
107 - Xuefeng Gao , Lingjiong Zhu 2019
Affine point processes are a class of simple point processes with self- and mutually-exciting properties, and they have found useful applications in several areas. In this paper, we obtain large-time asymptotic expansions in large deviations and refined central limit theorem for affine point processes, using the framework of mod-phi convergence. Our results extend the large-time limit theorems in [Zhang et al. 2015. Math. Oper. Res. 40(4), 797-819]. The resulting explicit approximations for large deviation probabilities and tail expectations can be used as an alternative to importance sampling Monte Carlo simulations. Numerical experiments illustrate our results.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا