Do you want to publish a course? Click here

Spectral decomposition of fractional operators and a reflected stable semigroup

84   0   0.0 ( 0 )
 Added by Pierre Patie
 Publication date 2016
  fields
and research's language is English




Ask ChatGPT about the research

In this paper, we provide the spectral decomposition in Hilbert space of the $mathcal{C}_0$-semigroup $P$ and its adjoint $hatP$ having as generator, respectively, the Caputo and the right-sided Riemann-Liouville fractional derivatives of index $1<alpha<2$. These linear operators, which are non-local and non-self-adjoint, appear in many recent studies in applied mathematics and also arise as the infinitesimal generators of some substantial processes such as the reflected spectrally negative $alpha$-stable process. Our approach relies on intertwining relations that we establish between these semigroups and the semigroup of a Bessel type process whose generator is a self-adjoint second order differential operator. In particular, from this commutation relation, we characterize the positive real axis as the continuous point spectrum of $P$ and provide a power series representation of the corresponding eigenfunctions. We also identify the positive real axis as the residual spectrum of the adjoint operator $hatP$ and elucidates its role in the spectral decomposition of these operators. By resorting to the concept of continuous frames, we proceed by investigating the domain of the spectral operators and derive two representations for the heat kernels of these semigroups. As a by-product, we also obtain regularity properties for these latter and also for the solution of the associated Cauchy problem.



rate research

Read More

Eigenproblems frequently arise in theory and applications of stochastic processes, but only a few have explicit solutions. Those which do, are usually solved by reduction to the generalized Sturm--Liouville theory for differential operators. This includes the Brownian motion and a whole class of processes, which derive from it by means of linear transformations. The more general eigenproblem for the {em fractional} Brownian motion (f.B.m.) is not solvable in closed form, but the exact asymptotics of its eigenvalues and eigenfunctions can be obtained, using a method based on analytic properties of the Laplace transform. In this paper we consider two processes closely related to the f.B.m.: the fractional Ornstein--Uhlenbeck process and the integrated fractional Brownian motion. While both derive from the f.B.m. by simple linear transformations, the corresponding eigenproblems turn out to be much more complex and their asymptotic structure exhibits new effects.
We propose and study a certain discrete time counterpart of the classical Feynman--Kac semigroup with a confining potential in countable infinite spaces. For a class of long range Markov chains which satisfy the direct step property we prove sharp estimates for functions which are (sub-, super-)harmonic in infinite sets with respect to the discrete Feynman--Kac operators. These results are compared with respective estimates for the case of a nearest-neighbour random walk which evolves on a graph of finite geometry. We also discuss applications to the decay rates of solutions to equations involving graph Laplacians and to eigenfunctions of the discrete Feynman--Kac operators. We include such examples as non-local discrete Schrodinger operators based on fractional powers of the nearest-neighbour Laplacians and related quasi-relativistic operators. Finally, we analyse various classes of Markov chains which enjoy the direct step property and illustrate the obtained results by examples.
75 - N.D. Cong 2021
We establish partial semigroup property of Riemann-Liouville and Caputo fractional differential operators. Using this result we prove theorems on reduction of multi-term fractional differential systems to single-term and multi-order systems, and prove existence and uniqueness of solution to multi-term Caputo fractional differential systems
We study bounded operators defined in terms of the regular representations of the $C^*$-algebra of an amenable, Hausdorff, second countable locally compact groupoid endowed with a continuous $2$-cocycle. We concentrate on spectral quantities associated to natural quotients of this twisted algebra, such as the essential spectrum, the essential numerical range, and Fredholm properties. We obtain decompositions for the regular representations associated to units of the groupoid belonging to a free locally closed orbit, in terms of spectral quantities attached to points (or orbits) in the boundary of this main orbit. As examples, we discuss various classes of magnetic pseudo-differential operators on nilpotent groups. We also prove localization and non-propagation properties associated to suitable parts of the essential spectrum. These are applied to twisted groupoids having a totally intransitive groupoid restriction at the boundary.
This paper explicitly computes the transition densities of a spectrally negative stable process with index greater than one, reflected at its infimum. First we derive the forward equation using the theory of sun-dual semigroups. The resulting forward equation is a boundary value problem on the positive half-line that involves a negative Riemann-Liouville fractional derivative in space, and a fractional reflecting boundary condition at the origin. Then we apply numerical methods to explicitly compute the transition density of this space-inhomogeneous Markov process, for any starting point, to any desired degree of accuracy. Finally, we discuss an application to fractional Cauchy problems, which involve a positive Caputo fractional derivative in time.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا