No Arabic abstract
Metasurfaces represent a new paradigm in artificial subwavelength structures due to their potential to overcome many challenges typically associated with bulk metamaterials. The ability making very thin structures and change their properties dynamically make metasurfaces an exceptional meta-optics platform for engineering advanced electromagnetic and photonic metadevices. Here, we suggest and demonstrate experimentally a novel tunable metasurface capable to enhance significantly the local image quality in magnetic resonance imaging (MRI). We present a design of the hybrid metasurface based on electromagnetically-coupled dielectric and metallic elements. We demonstrate how to tailor the spectral characteristics of the metasurface eigenmodes by changing dynamically the effective permittivity of the structure. By maximizing a coupling between metasurface eigenmodes and transmitted and received fields in the MRI system, we enhance the device sensitivity that results in a substantial improvement of the image quality.
We demonstrate that rapidly switched high-Q metasurfaces enable spectral regions of negative optical extinction.
In this paper, a broadband tunable polarization converter based on graphene metasurfaces is proposed. This polarization converter works in the terahertz (THz) frequency region, using the advantage of graphene characteristics to have a tunable frequency response. The designed graphene-shaped periodic structure on top of the substrate is utilized to convert the incident wave polarization to the desired target in a flexible operational band in the THz frequencies. The polarization conversion ratio is more than 0.85 in a wide range of frequencies in the THz band from 4.86 to 8.42 THz (the fractional bandwidth is 54%). The proposed polarization converter is insensitive to the angle of the incident wave up to 40{deg}. Using graphene provides a tunable frequency response without changing the geometry of the designed structure.
Efficient hybrid plasmonic-photonic metasurfaces that simultaneously take advantage of the potential of both pure metallic and all-dielectric nanoantennas are identified as an emerging technology in flat optics. Nevertheless, post-fabrication tunable hybrid metasurfaces are still elusive. Here, we present a reconfigurable hybrid metasurface platform by incorporating the phase-change material Ge$_{2}$Sb$_{2}$Te$_{5}$ (GST) into metal-dielectric meta-atoms for active and non-volatile tuning of properties of light. We systematically design a reduced-dimension meta-atom, which selectively controls the fundamental hybrid plasmonic-photonic resonances of the metasurface via the dynamic change of optical constants of GST without compromising the scattering efficiency. As a proof-of-concept, we experimentally demonstrate miniaturized tunable metasurfaces that control the amplitude and phase of incident light necessary for high-contrast optical switching and anomalous to specular beam deflection, respectively. Finally, we leverage a deep learning-based approach to present an intuitive low-dimensional visualization of the enhanced range of response reconfiguration enabled by the addition of GST. Our findings further substantiate dynamically tunable hybrid metasurfaces as promising candidates for the development of small-footprint energy harvesting, imaging, and optical signal processing devices.
The ability of phase-change materials to reversibly and rapidly switch between two stable phases has driven their use in a number of applications such as data storage and optical modulators. Incorporating such materials into metasurfaces enables new approaches to the control of optical fields. In this article we present the design of novel switchable metasurfaces that enable the control of the nonclassical two-photon quantum interference. These structures require no static power consumption, operate at room temperature, and have high switching speed. For the first adaptive metasurface presented in this article, tunable nonclassical two-photon interference from -97.7% (anti-coalescence) to 75.48% (coalescence) is predicted. For the second adaptive geometry, the quantum interference switches from -59.42% (anti-coalescence) to 86.09% (coalescence) upon a thermally driven crystallographic phase transition. The development of compact and rapidly controllable quantum devices is opening up promising paths to brand-new quantum applications as well as the possibility of improving free space quantum logic gates, linear-optics bell experiments, and quantum phase estimation systems.
Bound states in the continuum (BICs) have attracted much attention in recent years due to the infinite quality factor (Q-factor) resonance and extremely localized field. In this study, BICs have been demonstrated by dielectric metasurfaces with hybrid surface lattice resonance (SLR) in the experiment. By breaking the symmetry of geometry, SLR can be easily switched between BICs and quasi-BICs. Comparing with literature, switching between BICs and quasi-BICs is usually accompanied by wavelength shift. Here, a design rule is proposed to prevent the wavelength shift when the Q-factor is changing. Also, such a design also makes subsequent identification of the laser threshold more credible. Due to the high Q-factor, low threshold laser is one of the intuitive applications of BICs. Utilize the high localized ability of BICs, low threshold BICs laser can be achieved by the dielectric metasurface immersed with Rhodamine 6G. Interestingly, due to the high Q-factor resonance of BICs, the laser signals and images can be observed in almost transparent samples. Not only the BICs laser is demonstrated in the experiment, but also the mechanism of BICs is deeply analyzed. This study can help readers better understand this novel feature of BICs, and provide the way for engineer BICs metasurfaces. The device can provide various applications, including laser, optical sensing, non-linear optics enhancement, and single-photon source.