Do you want to publish a course? Click here

Dynamic hybrid metasurfaces

240   0   0.0 ( 0 )
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Efficient hybrid plasmonic-photonic metasurfaces that simultaneously take advantage of the potential of both pure metallic and all-dielectric nanoantennas are identified as an emerging technology in flat optics. Nevertheless, post-fabrication tunable hybrid metasurfaces are still elusive. Here, we present a reconfigurable hybrid metasurface platform by incorporating the phase-change material Ge$_{2}$Sb$_{2}$Te$_{5}$ (GST) into metal-dielectric meta-atoms for active and non-volatile tuning of properties of light. We systematically design a reduced-dimension meta-atom, which selectively controls the fundamental hybrid plasmonic-photonic resonances of the metasurface via the dynamic change of optical constants of GST without compromising the scattering efficiency. As a proof-of-concept, we experimentally demonstrate miniaturized tunable metasurfaces that control the amplitude and phase of incident light necessary for high-contrast optical switching and anomalous to specular beam deflection, respectively. Finally, we leverage a deep learning-based approach to present an intuitive low-dimensional visualization of the enhanced range of response reconfiguration enabled by the addition of GST. Our findings further substantiate dynamically tunable hybrid metasurfaces as promising candidates for the development of small-footprint energy harvesting, imaging, and optical signal processing devices.



rate research

Read More

Janus monolayers have long been captivated as a popular notion for breaking in-plane and out-of-plane structural symmetry. Originated from chemistry and materials science, the concept of Janus functions have been recently extended to ultrathin metasurfaces by arranging meta-atoms asymmetrically with respect to the propagation or polarization direction of the incident light. However, such metasurfaces are intrinsically static and the information they carry can be straightforwardly decrypted by scanning the incident light directions and polarization states once the devices are fabricated. In this Letter, we present a dynamic Janus metasurface scheme in the visible spectral region. In each super unit cell, three plasmonic pixels are categorized into two sets. One set contains a magnesium nanorod and a gold nanorod that are orthogonally oriented with respect to each other, working as counter pixels. The other set only contains a magnesium nanorod. The effective pixels on the Janus metasurface can be reversibly regulated by hydrogenation/dehydrogenation of the magnesium nanorods. Such dynamic controllability at visible frequencies allows for flat optical elements with novel functionalities including beam steering, bifocal lensing, holographic encryption, and dual optical function switching.
Motivated by the recent growing demand in dynamically-controlled flat optics, we take advantage of a hybrid phase-change plasmonic metasurface (MS) to effectively tailor the amplitude, phase, and polarization responses of the incident beam within a unique structure. Such a periodic architecture exhibits two fundamental modes; pronounced counter-propagating short-range surface plasmon polariton (SR-SPP) coupled to the Ge2Sb2Te5 (GST) alloy as the feed gap, and the propagative surface plasmon polariton (PR-SPP) resonant modes tunneling to the GST nanostripes. By leveraging the multistate phase transition of alloy from amorphous to the crystalline, which induces significant complex permittivity change, the interplay between such enhanced modes can be drastically modified. Accordingly, in the intermediate phases, the proposed system experiences a coupled condition of operational over-coupling and under-coupling regimes leading to an inherently broadband response. We wisely addressing each gate-tunable meta-atom to achieve robust control over the reflection characteristics, wide phase agility up to 315? or considerable reflectance modulation up to 60%, which facilitate a myriad of on-demand optical functionalities in the telecommunication band. Based on the revealed underlying physics and electro-thermal effects in the GST alloy, a simple systematic approach for realization of an electro-optically tunable multifunctional metadevice governing anomalous reflection angle control (e.g., phased array antenna), near-perfect absorption (e.g., modulator), and polarization conversion (e.g., wave plate) is presented. As a promising alternative to their passive counterparts, such high-speed, non-volatile MSs offer an smart paradigm for reversible, energy-efficient, and programmable optoelectronic devices such as holograms, switches, and polarimeters.
Metasurface-based color display and holography have greatly advanced the state of the art display technologies. To further enrich the metasurface functionalities, recently a lot of research endeavors have been made to combine these two display functions within a single device. However, so far such metasurfaces have remained static and lack tunability once the devices are fabricated. In this work, we demonstrate a dynamic dual-function metasurface device at visible frequencies. It allows for switching between dynamic holography and dynamic color display, taking advantage of the reversible phase transition of magnesium through hydrogenation and dehydrogenation. Spatially arranged stepwise nanocavity pixels are employed to accurately control the amplitude and phase of light, enabling the generation of high-quality color prints and holograms. Our work represents a paradigm toward compact and multifunctional optical elements for future display technologies.
Hybrid dielectric metasurfaces have emerged as a promising approach to enhancing near field confinement and thus achieving high optical nonlinearity using low loss dielectrics. Additional flexibility in design and fabrication of hybrid metasurfaces allows dynamic control of light, which is value-added for a wider range of applications. Here, we demonstrate a tunable and efficient third harmonic generation (THG) via hybrid metasurfaces with phase change material Ge2Sb2Te5 (GST) deposited on top of amorphous silicon nanostructutes. Fano resonance is excited to confine the incident light inside the hybrid metasurfaces, and an experimental quality factor ($Q$-factor) of 125 is achieved at the fundamental pump wavelength around 1210 nm. We demonstrate the switching between a turn-on state of Fano resonance in the amorphous state of GST and a turn-off state in its crystalline state and also gradual multistate tuning of THG emission at its intermediate state. We achieve a high THG conversion efficiency of ${eta} = 2.9*10^{-6}$ %, which is more than ~32 times of that of a GST-based Fabry-P`erot cavity under a similar pump laser power, thanks to the enhanced field confinement due to the Fano resonance. Our results show the strong potential of GST-based hybrid dielectric metasurfaces for efficient and tunable nonlinear optical devices.
Actively tunable and reconfigurable wavefront shaping by optical metasurfaces poses a significant technical challenge often requiring unconventional materials engineering and nanofabrication. Most wavefront-shaping metasurfaces can be considered local in that their operation depends on the responses of individual meta-units. In contrast, nonlocal metasurfaces function based on the modes supported by many adjacent meta-units, resulting in sharp spectral features but typically no spatial control of the outgoing wavefront. Recently, nonlocal metasurfaces based on quasi-bound states in the continuum have been shown to produce designer wavefronts only across the narrow bandwidth of the supported Fano resonance. Here, we leverage the enhanced light-matter interactions associated with sharp Fano resonances to explore the active modulation of optical spectra and wavefronts by refractive index tuning and mechanical stretching. We experimentally demonstrate proof-of-principle thermo-optically tuned nonlocal metasurfaces made of silicon, and numerically demonstrate nonlocal metasurfaces that thermo-optically switch between distinct wavefront shapes. This meta-optics platform for thermally reconfigurable wavefront-shaping requires neither unusual materials and fabrication nor active control of individual meta-units.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا