Do you want to publish a course? Click here

Nano-actuator concepts based on ferroelectric switching

124   0   0.0 ( 0 )
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

The concept of a nano-actuator that uses ferroelectric switching to generate enhanced displacements is explored using a phase-field model. The actuator has a ground state in the absence of applied electric field that consists of polarized domains oriented to form a flux closure. When electric field is applied, the polarization reorients through ferroelectric switching and produces strain. The device is mechanically biased by a substrate and returns to the ground state when electric field is removed, giving a repeatable actuation cycle. The mechanical strains which accompany ferroelectric switching are several times greater than the strains attained due to the piezoelectric effect alone. We also demonstrate a second design of actuator in which the displacements are further increased by the bending of a ferroelectric beam. Phase-field modelling is used to track the evolution of domain patterns in the devices during the actuation cycle, and to study the design parameters so as to enhance the achievable actuation strains.

rate research

Read More

79 - Mengwei Si , Xiao Lyu , 2018
The ferroelectric polarization switching in ferroelectric hafnium zirconium oxide (Hf0.5Zr0.5O2, HZO) in the HZO/Al2O3 ferroelectric/dielectric stack is investigated systematically by capacitance-voltage and polarization-voltage measurements. The thickness of dielectric layer is found to have a determinant impact on the ferroelectric polarization switching of ferroelectric HZO. A suppression of ferroelectricity is observed with thick dielectric layer. In the gate stacks with thin dielectric layers, a full polarization switching of the ferroelectric layer is found possible by the proposed leakage-current-assist mechanism through the ultrathin dielectric layer. Theoretical simulation results agree well with experimental data. This work clarifies some of the critical parts of the long-standing confusions and debating related to negative capacitance field-effect transistors (NC-FETs) concepts and experiments.
We report on the fabrication of organic multiferroic tunnel junction (OMFTJ) based on an organic barrier of Poly(vinylidene fluoride) (PVDF):Fe3O4 nanocomposite. By adding Fe3O4 nanoparticles into the PVDF barrier, we found that the ferroelectric properties of the OMFTJ are considerably improved compared to that with pure PVDF barrier. It can lead to a tunneling electroresistance (TER) of about 450% at 10K and 100% at room temperature (RT), which is much higher than that of the pure PVDF based device (70% at 10K and 7% at RT). OMFTJs based on the PVDF:Fe3O4 nanocomposite could open new functionalities in smart multiferroic devices via the interplay of the magnetism of nanoparticle with the ferroelectricity of the organic barrier.
Ferroelectric tunnel junctions (FTJ) based on hafnium zirconium oxide (Hf1-xZrxO2; HZO) are a promising candidate for future applications, such as low-power memories and neuromorphic computing. The tunneling electroresistance (TER) is tunable through the polarization state of the HZO film. To circumvent the challenge of fabricating thin ferroelectric HZO layers in the tunneling range of 1-3 nm range, ferroelectric/dielectric double layer sandwiched between two symmetric metal electrodes are used. Due to the decoupling of the ferroelectric polarization storage layer and a dielectric tunneling layer with a higher bandgap, a significant TER ratio between the two polarization states is obtained. By exploiting previously reported switching behaviour and the gradual tunability of the resistance, FTJs can be used as potential candidates for the emulation of synapses for neuromorphic computing in spiking neural networks. The implementation of two major components of a synapse are shown: long term depression/potentiation by varying the amplitude/width/number of voltage pulses applied to the artificial FTJ synapse, and spike-timing-dependent-plasticity curves by applying time-delayed voltages at each electrode. These experimental findings show the potential of spiking neural networks and neuromorphic computing that can be implemented with hafnia-based FTJs.
262 - M. H. Shao , H. F. Liu , R. He 2021
Ferroelectricity, especially in hafnia-based thin films at nanosizes, has been rejuvenated in the fields of low-power, nonvolatile and Si-compatible modern memory and logic applications. Despite tremendous efforts to explore the formation of the metastable ferroelectric phase and the polarization degradation during field cycling, the ability of oxygen vacancy to exactly engineer and switch polarization remains to be elucidated. Here we report reversibly electrochemical control of ferroelectricity in Hf$_{0.5}$Zr$_{0.5}$O$_2$ (HZO) heterostructures with a mixed ionic-electronic LaSrMnO$_3$ electrode, achieving a hard breakdown field more than 18 MV/cm, over fourfold as high as that of typical HZO. The electrical extraction and insertion of oxygen into HZO is macroscopically characterized and atomically imaged in situ. Utilizing this reversible process, we achieved multiple polarization states and even repeatedly repaired the damaged ferroelectricity by reversed negative electric fields. Our study demonstrates the robust and switchable ferroelectricity in hafnia oxide distinctly associated with oxygen vacancy and opens up opportunities to recover, manipulate, and utilize rich ferroelectric functionalities for advanced ferroelectric functionality to empower the existing Si-based electronics such as multi-bit storage.
In this work, we theoretically and experimentally investigate the working principle and non-volatile memory (NVM) functionality of 2D $alpha$-In$_2$Se$_3$ based ferroelectric-semiconductor-metal-junction (FeSMJ). First, we analyze the semiconducting and ferroelectric properties of $alpha$-In$_2$Se$_3$ van-der-Waals (vdW) stack via experimental characterization and first-principle simulations. Then, we develop a FeSMJ device simulation framework by self-consistently solving Landau-Ginzburg-Devonshire (LGD) equation, Poissons equation, and charge-transport equations. Based on the extracted FeS parameters, our simulation results show good agreement with the experimental characteristics of our fabricated $alpha$-In$_2$Se$_3$ based FeSMJ. Our analysis suggests that the vdW gap between the metal and FeS plays a key role to provide FeS polarization-dependent modulation of Schottky barrier heights. Further, we show that the thickness scaling of FeS leads to a reduction in read/write voltage and an increase in distinguishability. Array-level analysis of FeSMJ NVM suggests a 5.47x increase in sense margin, 18.18x reduction in area and lower read-write power with respect to Fe insulator tunnel junction (FTJ).
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا