No Arabic abstract
In this work, we theoretically and experimentally investigate the working principle and non-volatile memory (NVM) functionality of 2D $alpha$-In$_2$Se$_3$ based ferroelectric-semiconductor-metal-junction (FeSMJ). First, we analyze the semiconducting and ferroelectric properties of $alpha$-In$_2$Se$_3$ van-der-Waals (vdW) stack via experimental characterization and first-principle simulations. Then, we develop a FeSMJ device simulation framework by self-consistently solving Landau-Ginzburg-Devonshire (LGD) equation, Poissons equation, and charge-transport equations. Based on the extracted FeS parameters, our simulation results show good agreement with the experimental characteristics of our fabricated $alpha$-In$_2$Se$_3$ based FeSMJ. Our analysis suggests that the vdW gap between the metal and FeS plays a key role to provide FeS polarization-dependent modulation of Schottky barrier heights. Further, we show that the thickness scaling of FeS leads to a reduction in read/write voltage and an increase in distinguishability. Array-level analysis of FeSMJ NVM suggests a 5.47x increase in sense margin, 18.18x reduction in area and lower read-write power with respect to Fe insulator tunnel junction (FTJ).
An YBCO-based test structure corresponding to the family of ReRAM devices associated with the valence change mechanism is presented. We have characterized its electrical response previous to its lift-off to a Low Earth Orbit (LEO) using standard electronics and also with the dedicated LabOSat-01 controller. Similar results were obtained in both cases. After about 200 days at LEO on board a small satellite, electrical tests started on the memory device using the LabOSat-01 controller. We discuss the results of the first 150 tests, performed along a 433-day time interval in space. The memory device remained operational despite the hostile conditions that involved launching, lift-off vibrations, permanent thermal cycling and exposure to ionizing radiation, with doses 3 orders of magnitude greater than the usual ones on Earth. The device showed resistive switching and IV characteristics similar to those measured on Earth, although with changes that follow a smooth drift in time. A detailed study of the electrical transport mechanisms, based on previous models that indicate the existence of various conducting mechanisms through the metal-YBCO interface showed that the observed drift can be associated with a local temperature drift at the LabOSat controller, with no clear evidence that allows determining changes in the underlying microscopic factors. These results show the reliability of complex-oxide non-volatile ReRAM-based devices in order to operate under all the hostile conditions encountered in space-borne applications.
Gallium oxide films were grown by HVPE on (0001) sapphire substrates with and without $alpha$-Cr$_2$O$_3$ buffer produced by RF magnetron sputtering. Deposition on bare sapphire substrates resulted in a mixture of $alpha$-Ga$_2$O$_3$ and $epsilon$-Ga$_2$O$_3$ phases with a dislocation density of about $2cdot10^{10}$ cm$^{-2}$. The insertion of $alpha$-Ga$_2$O$_3$ buffer layers resulted in phase-pure $alpha$-Ga$_2$O$_3$ films and a fourfold reduction of the dislocation density to $5 cdot 10^9$ cm$^{-2}$.
The memory wall bottleneck is a key challenge across many data-intensive applications. Multi-level FeFET-based embedded non-volatile memories are a promising solution for denser and more energy-efficient on-chip memory. However, reliable multi-level cell storage requires careful optimizations to minimize the design overhead costs. In this work, we investigate the interplay between FeFET device characteristics, programming schemes, and memory array architecture, and explore different design choices to optimize performance, energy, area, and accuracy metrics for critical data-intensive workloads. From our cross-stack design exploration, we find that we can store DNN weights and social network graphs at a density of over 8MB/mm^2 and sub-2ns read access latency without loss in application accuracy.
We report on the study of optical properties of mist CVD grown alpha Gallium oxide with the observation of excitonic absorption in spectral responsivity measurements. 163 nm of Gallium oxide was grown on sapphire using Gallium acetylacetonate as the starting solution at a substrate temperature of 450 deg C. The film was found to be crystalline and of alpha phase with an on axis full width at half maximum of 92 arcsec as confirmed from X ray diffraction scans. The Taucs plot extracted from absorption spectroscopy exhibited two transitions in the UV regime at 5.3 eV and 5.6 eV, corresponding to excitonic absorption and direct band to band transition respectively. The binding energy of exciton was extracted to be 114 meV from spectral responsivity measurements. Further, metal semiconductor metal photodetectors with lateral inter digitated geometry were fabricated on the film. A sharp band edge was observed at 230 nm in the spectral response with peak responsivity of around 1 Amperes per Watt at a bias of 20 V. The UV to visible rejection ratio was found to be around 100 while the dark current was measured to be around 0.1 nA.
Recent experiments on layered {alpha}-In2Se3 have confirmed its room-temperature ferroelectricity under ambient condition. This observation renders {alpha}-In2Se3 an excellent platform for developing two-dimensional (2D) layered-material based electronics with nonvolatile functionality. In this letter, we demonstrate non-volatile memory effect in a hybrid 2D ferroelectric field effect transistor (FeFET) made of ultrathin {alpha}-In2Se3 and graphene. The resistance of graphene channel in the FeFET is tunable and retentive due to the electrostatic doping, which stems from the electric polarization of the ferroelectric {alpha}-In2Se3. The electronic logic bit can be represented and stored with different orientations of electric dipoles in the top-gate ferroelectric. The 2D FeFET can be randomly re-written over more than $10^5$ cycles without losing the non-volatility. Our approach demonstrates a protype of re-writable non-volatile memory with ferroelectricity in van de Waals 2D materials.