Do you want to publish a course? Click here

Nanoscale mapping and spectroscopy of non-radiative hyperbolic modes in hexagonal boron nitride nanostructures

58   0   0.0 ( 0 )
 Added by Joshua Caldwell
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

The inherent crystal anisotropy of hexagonal boron nitride (hBN) sustains naturally hyperbolic phonon polaritons, i.e. polaritons that can propagate with very large wavevectors within the material volume, thereby enabling optical confinement to exceedingly small dimensions. Indeed, previous research has shown that nanometer-scale truncated nanocone hBN cavities, with deep subwavelength dimensions, support three-dimensionally confined optical modes in the mid-infrared. Due to optical selection rules, only a few of many such modes predicted theoretically have been observed experimentally via far-field reflection and scattering-type scanning near-field optical microscopy. The Photothermal induced resonance (PTIR) technique probes optical and vibrational resonances overcoming weak far-field emission by leveraging an atomic force microscope (AFM) probe to transduce local sample expansion due to light absorption. Here we show that PTIR enables the direct observation of previously unobserved, dark hyperbolic modes of hBN nanostructures. Leveraging these optical modes could yield a new degree of control over the electromagnetic near-field concentration, polarization and angular momentum in nanophotonic applications.



rate research

Read More

221 - S. Dai , M. Tymchenko , Y. Yang 2017
Hexagonal boron nitride (hBN) is a natural hyperbolic material that supports both volume-confined hyperbolic polaritons (HPs) and sidewall-confined hyperbolic surface polaritons (HSPs). In this work, we demonstrate effective excitation, control and steering of HSPs in hBN through engineering the geometry and orientation of hBN sidewalls. By combining infrared (IR) nano-imaging and numerical simulations, we investigate the reflection, transmission and scattering of HSPs at the hBN corners with various apex angles. We show that the sidewall-confined nature of HSPs enables a high degree of control over their propagation by designing the geometry of hBN nanostructures.
Ferromagnetic contacts are widely used to inject spin polarized currents into non-magnetic materials such as semiconductors or 2-dimensional materials like graphene. In these systems, oxidation of the ferromagnetic materials poses an intrinsic limitation on device performance. Here we investigate the role of ex-situ transferred chemical vapour deposited hexagonal boron nitride (hBN) as an oxidation barrier for nanostructured cobalt and permalloy electrodes. The chemical state of the ferromagnets was investigated using X-ray photoemission electron microscopy owing to its high sensitivity and lateral resolution. We have compared the oxide thickness formed on ferromagnetic nanostructures covered by hBN to uncovered reference structures. Our results show that hBN reduces the oxidation rate of ferromagnetic nanostructures suggesting that it could be used as an ultra-thin protection layer in future spintronic devices.
Imaging materials and inner structures with resolution below the diffraction limit has become of fundamental importance in recent years for a wide variety of applications. In this work, we report sub-diffractive internal structure diagnosis of hexagonal boron nitride by exciting and imaging hyperbolic phonon polaritons. Based on their unique propagation properties, we are able to accurately locate defects in the crystal interior with nanometer resolution. The precise location, size and geometry of the concealed defects is reconstructed by analyzing the polariton wavelength, reflection coefficient and their dispersion. We have also studied the evolution of polariton reflection, transmission and scattering as a function of defect size and photon frequency. The nondestructive high-precision polaritonic structure diagnosis technique introduced here can be also applied to other hyperbolic or waveguide systems, and may be deployed in the next-generation bio-medical imaging, sensing and fine structure analysis.
147 - S. Dai , Q. Ma , M. K. Liu 2015
Hexagonal boron nitride (h-BN) is a natural hyperbolic material, for which the dielectric constants are the same in the basal plane (epsilon^t = epsilon^x = epsilon^y) but have opposite signs (epsilon^t*epsilon^z < 0) from that in the normal plane (epsilon^z). Due to this property, finite-thickness slabs of h-BN act as multimode waveguides for propagation of hyperbolic phonon polaritons - collective modes that originate from the coupling between photons and electric dipoles in phonons. However, control of these hyperbolic phonon polaritons modes has remained challenging, mostly because their electrodynamic properties are dictated by the crystal lattice of h-BN. Here we show by direct nano-infrared imaging that these hyperbolic polaritons can be effectively modulated in a van der Waals heterostructure composed of monolayer graphene on h-BN. Tunability originates from the hybridization of surface plasmon polaritons in graphene with hyperbolic phonon polaritons in h-BN, so that the eigenmodes of the graphene/h-BN heterostructure are hyperbolic plasmon-phonon polaritons. Remarkably, the hyperbolic plasmon-phonon polaritons in graphene/h-BN suffer little from ohmic losses, making their propagation length 1.5-2.0 times greater than that of hyperbolic phonon polaritons in h-BN. The hyperbolic plasmon-phonon polaritons possess the combined virtues of surface plasmon polaritons in graphene and hyperbolic phonon polaritons in h-BN. Therefore, graphene/h-BN structures can be classified as electromagnetic metamaterials since the resulting properties of these devices are not present in its constituent elements alone.
Hexagonal boron nitride (hBN) is a large band gap layered crystal, frequently incorporated in van der Waals (vdW) heterostructures as an insulating or tunnel barrier. Localised states with energies within its band gap can emit visible light, relevant to applications in nanophotonics and quantum information processing. However, they also give rise to conducting channels, which can induce electrical breakdown when a large voltage is applied. Here we use gated tunnel transistors to study resonant electron tunnelling through the localised states in few atomic-layer hBN barriers sandwiched between two monolayer graphene electrodes. The measurements are used to determine the energy, linewidth, tunnelling transmission probability, and depth within the barrier of more than 50 distinct localised states. A three-step process of electron percolation through two spatially separated localised states is also investigated.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا