No Arabic abstract
Hexagonal boron nitride (hBN) is a large band gap layered crystal, frequently incorporated in van der Waals (vdW) heterostructures as an insulating or tunnel barrier. Localised states with energies within its band gap can emit visible light, relevant to applications in nanophotonics and quantum information processing. However, they also give rise to conducting channels, which can induce electrical breakdown when a large voltage is applied. Here we use gated tunnel transistors to study resonant electron tunnelling through the localised states in few atomic-layer hBN barriers sandwiched between two monolayer graphene electrodes. The measurements are used to determine the energy, linewidth, tunnelling transmission probability, and depth within the barrier of more than 50 distinct localised states. A three-step process of electron percolation through two spatially separated localised states is also investigated.
We investigate the adsorption of graphene sheets on h-BN substrates by means of first-principles calculations in the framework of adiabatic connection fluctuation-dissipation theory in the random phase approximation. We obtain adhesion energies for different crystallographic stacking configurations and show that the interlayer bonding is due to long-range van der Waals forces. The interplay of elastic and adhesion energies is shown to lead to stacking disorder and moire structures. Band structure calculations reveal substrate induced mass terms in graphene which change their sign with the stacking configuration. The dispersion, absolute band gaps and the real space shape of the low energy electronic states in the moire structures are discussed. We find that the absolute band gaps in the moire structures are at least an order of magnitude smaller than the maximum local values of the mass term. Our results are in agreement with recent STM experiments.
Even weak van der Waals (vdW) adhesion between two-dimensional solids may perturb their various materials properties owing to their low dimensionality. Although the electronic structure of graphene has been predicted to be modified by the vdW interaction with other materials, its optical characterization has not been successful. In this report, we demonstrate that Raman spectroscopy can be utilized to detect a few % decrease in the Fermi velocity (vF) of graphene caused by the vdW interaction with underlying hexagonal boron nitride (hBN). Our study also establishes Raman spectroscopic analysis which enables separation of the effects by the vdW interaction from those by mechanical strain or extra charge carriers. The analysis reveals that spectral features of graphene on hBN are mainly affected by change in vF and mechanical strain, but not by charge doping unlike graphene supported on SiO2 substrates. Graphene on hBN was also found to be less susceptible to thermally induced hole doping.
Hexagonal boron nitride (h-BN), one of the hallmark van der Waals (vdW) layered crystals with an ensemble of attractive physical properties, is playing increasingly important roles in exploring two-dimensional (2D) electronics, photonics, mechanics, and emerging quantum engineering. Here, we report on the demonstration of h-BN phononic crystal waveguides with designed pass and stop bands in the radio frequency (RF) range and controllable wave propagation and transmission, by harnessing arrays of coupled h-BN nanomechanical resonators with engineerable coupling strength. Experimental measurements validate that these phononic crystal waveguides confine and support 15 to 24 megahertz (MHz) wave propagation over 1.2 millimeters. Analogous to solid-state atomic crystal lattices, phononic bandgaps and dispersive behaviors have been observed and systematically investigated in the h-BN phononic waveguides. Guiding and manipulating acoustic waves on such additively integratable h-BN platform may facilitate multiphysical coupling and information transduction, and open up new opportunities for coherent on-chip signal processing and communication via emerging h-BN photonic and phononic devices.
Quantum emitters in hexagonal boron nitride (hBN) have recently emerged as promising bright single photon sources. In this letter we investigate in details their optical properties at cryogenic temperatures. In particular, we perform temperature resolved photoluminescence studies and measure photon coherence times from the hBN emitters. The obtained value of 81(1) ps translates to a width of $sim$12 GHz which is higher than the Fourier transform limited value of $sim$32 MHz. To account for the photodynamics of the emitter, we perform ultrafast spectral diffusion measurements that partially account for the coherence times. Our results provide important insight into the relaxation processes in quantum emitters in hBN which is mandatory to evaluate their applicability for quantum information processing.
The inherent crystal anisotropy of hexagonal boron nitride (hBN) sustains naturally hyperbolic phonon polaritons, i.e. polaritons that can propagate with very large wavevectors within the material volume, thereby enabling optical confinement to exceedingly small dimensions. Indeed, previous research has shown that nanometer-scale truncated nanocone hBN cavities, with deep subwavelength dimensions, support three-dimensionally confined optical modes in the mid-infrared. Due to optical selection rules, only a few of many such modes predicted theoretically have been observed experimentally via far-field reflection and scattering-type scanning near-field optical microscopy. The Photothermal induced resonance (PTIR) technique probes optical and vibrational resonances overcoming weak far-field emission by leveraging an atomic force microscope (AFM) probe to transduce local sample expansion due to light absorption. Here we show that PTIR enables the direct observation of previously unobserved, dark hyperbolic modes of hBN nanostructures. Leveraging these optical modes could yield a new degree of control over the electromagnetic near-field concentration, polarization and angular momentum in nanophotonic applications.