No Arabic abstract
Imaging materials and inner structures with resolution below the diffraction limit has become of fundamental importance in recent years for a wide variety of applications. In this work, we report sub-diffractive internal structure diagnosis of hexagonal boron nitride by exciting and imaging hyperbolic phonon polaritons. Based on their unique propagation properties, we are able to accurately locate defects in the crystal interior with nanometer resolution. The precise location, size and geometry of the concealed defects is reconstructed by analyzing the polariton wavelength, reflection coefficient and their dispersion. We have also studied the evolution of polariton reflection, transmission and scattering as a function of defect size and photon frequency. The nondestructive high-precision polaritonic structure diagnosis technique introduced here can be also applied to other hyperbolic or waveguide systems, and may be deployed in the next-generation bio-medical imaging, sensing and fine structure analysis.
Hexagonal boron nitride (hBN) is a natural hyperbolic material that supports both volume-confined hyperbolic polaritons (HPs) and sidewall-confined hyperbolic surface polaritons (HSPs). In this work, we demonstrate effective excitation, control and steering of HSPs in hBN through engineering the geometry and orientation of hBN sidewalls. By combining infrared (IR) nano-imaging and numerical simulations, we investigate the reflection, transmission and scattering of HSPs at the hBN corners with various apex angles. We show that the sidewall-confined nature of HSPs enables a high degree of control over their propagation by designing the geometry of hBN nanostructures.
Hexagonal boron nitride (h-BN) is a natural hyperbolic material, for which the dielectric constants are the same in the basal plane (epsilon^t = epsilon^x = epsilon^y) but have opposite signs (epsilon^t*epsilon^z < 0) from that in the normal plane (epsilon^z). Due to this property, finite-thickness slabs of h-BN act as multimode waveguides for propagation of hyperbolic phonon polaritons - collective modes that originate from the coupling between photons and electric dipoles in phonons. However, control of these hyperbolic phonon polaritons modes has remained challenging, mostly because their electrodynamic properties are dictated by the crystal lattice of h-BN. Here we show by direct nano-infrared imaging that these hyperbolic polaritons can be effectively modulated in a van der Waals heterostructure composed of monolayer graphene on h-BN. Tunability originates from the hybridization of surface plasmon polaritons in graphene with hyperbolic phonon polaritons in h-BN, so that the eigenmodes of the graphene/h-BN heterostructure are hyperbolic plasmon-phonon polaritons. Remarkably, the hyperbolic plasmon-phonon polaritons in graphene/h-BN suffer little from ohmic losses, making their propagation length 1.5-2.0 times greater than that of hyperbolic phonon polaritons in h-BN. The hyperbolic plasmon-phonon polaritons possess the combined virtues of surface plasmon polaritons in graphene and hyperbolic phonon polaritons in h-BN. Therefore, graphene/h-BN structures can be classified as electromagnetic metamaterials since the resulting properties of these devices are not present in its constituent elements alone.
Nanofocusing of light offers new technological opportunities for the delivery and manipulation of electromagnetic fields at sub-diffraction limited length scales. Here, we show that hyperbolic phonon polarity,HPP, modes in the mid infrared as supported by a hexagonal boron nitride, h-BN, slab can be nanofocused (i.e. both field enhanced and wavelength compressed) by propagation along a vertical taper. Via numerical simulations, we demonstrate that field enhancement factors of 90, for steep tapers, and wavelength compression of more than an order of magnitude for adiabatic tapers, can be expected. Employing scatteringtype scanning near field optical microscopy ,s SNOM, we provide for the first time proof of principle experimental evidence of a significant HPP wavelength compression. We expect these functionalities to provide diverse applications, from biosensing and non-linear optics to optical circuitry.
When a low-dimensional polaritonic material is placed in proximity to a highly conductive metal, polariton modes couple to their images in the metal, forming highly compressed image polaritons. So far, near-field mapping has been used to observe such modes in graphene and hexagonal boron nitride (hBN). However, an accurate measurement of their intrinsic loss remains challenging because of the inherent complexity of the near-field signal, particularly for the hyperbolic phonon-polaritons (HPP). Here we demonstrate that monocrystalline gold flakes, an atomically-flat low-loss substrate for image modes, provide a platform for precise near-field measurement of the complex propagation constant. As a topical example, we measure dispersion of the hyperbolic image phonon-polaritons (HIP) in hBN, revealing that their normalized propagation length exhibits a parabolic spectral dependency. At the frequency of the maximal propagation, image modes exhibit nearly two times lower normalized loss, while being 2.4 times more compressed compared to the phonon-polaritons in hBN on a dielectric substrate. We conclude that the image phonon-polaritons in van der Waals crystals provide a unique nanophotonic platform where strong light-matter interaction and wave phenomena can be harnessed at the same time.
The relative twist angle in heterostructures of two-dimensional (2D) materials with similar lattice constants result in a dramatic alteration of the electronic properties. Here, we investigate the electrical and magnetotransport properties in bilayer graphene (BLG) encapsulated between two hexagonal boron nitride (hBN) crystals, where the top and bottom hBN are rotationally aligned with bilayer graphene with a twist angle $theta_tsim 0^{circ} text{and}~ theta_b < 1^{circ}$, respectively. This results in the formation of two moire superlattices, with the appearance of satellite resistivity peaks at carrier densities $n_{s1}$ and $n_{s2}$, in both hole and electron doped regions, together with the resistivity peak at zero carrier density. Furthermore, we measure the temperature(T) dependence of the resistivity ($rho$). The resistivity shows a linear increment with temperature within the range 10K to 50K for the density regime $n_{s1} <n<n_{s2}$ with a large slope d$rho$/dT $sim$ 8.5~$Omega$/K. The large slope of d$rho$/dT is attributed to the enhanced electron-phonon coupling arising due to the suppression of Fermi velocity in the reconstructed minibands, which was theoretically predicted, recently in doubly aligned graphene with top and bottom hBN. Our result establishes the uniqueness of doubly aligned moire system to tune the strength of electron-phonon coupling and to modify the electronic properties of multilayered heterostructures.