No Arabic abstract
We study the impact of finite-size effects on the key rate of continuous-variable (CV) measurement-device-independent (MDI) quantum key distribution (QKD). Inspired by the parameter estimation technique developed in [Rupert textit{et al.} Phys. Rev. A textbf{90}, 062310 (2014)]~we adapt it to study CV-MDI-QKD and, assuming realistic experimental conditions, we analyze the impact of finite-size effects on the key rate. We find that, increasing the block-size, the performance of the protocol converges towards the ideal one, and that block-sizes between $10^{6}$ and $10^{9}$ data points can already provide a key rate $sim10^{-2}$ bit/use over metropolitan distances.
In this thesis we study the finite-size analysis of two continuous-variables quantum key distribution schemes. The first one is the one-way protocol using Gaussian modulation of thermal states and the other is the measurement-device-independent protocol. To do so, we adopt an efficient channel parameter estimation method based on the assumption of the Gaussian variables and the central limit theorem introduced by Ruppert et al. [Phys. Rev. A 90, 062310 (2014)]. Furthermore, we present a composable security analysis of the measurement device independent protocol for coherent attacks with a channel parameter estimation that is not based on the central limit theorem. We also investigated, in the asymptotic regime, an asymmetric situation for the authenticated parties against the eavesdropper caused by fast-fading channels. Here we assume that the eavesdropper has the full control of the communication channel and can instantaneously change its transmissivity in every use of it. We assumed the simple model of a uniform fading and addressed the cases of one-way protocols, continuous-measurement device-independent protocol in symmetric configuration and its star network extension for three users. Finally, we extended the asymptotic study of the one-way protocols using an arbitrary number of phase-encoded coherent states assuming a thermal loss channel without using a Gaussian approximation.
We study the impact of finite-size effect on continuous variable source-independent quantum random number generation. The central-limit theorem and maximum likelihood estimation theorem are used to derive the formula which could output the statistical fluctuations and determine upper bound of parameters of practical quantum random number generation. With these results, we can see the check data length and confidence probability has intense relevance to the final randomness, which can be adjusted according to the demand in implementation. Besides, other key parameters, such as sampling range size and sampling resolution, have also been considered in detail. It is found that the distribution of quantified output related with sampling range size has significant effects on the loss of final randomness due to finite-size effect. The overall results indicate that the finite-size effect should be taken into consideration for implementing the continuous variable source-independent quantum random number generation in practical.
We introduce a robust scheme for long-distance continuous-variable (CV) measurement-device-independent (MDI) quantum key distribution (QKD) in which we employ post-selection between distant parties communicating through the medium of an untrusted relay. We perform a security analysis that allows for general transmissivity and thermal noise variance of each link, in which we assume an eavesdropper performs a collective attack and controls the excess thermal noise in the channels. The introduction of post-selection enables the parties to sustain a secret key rate over distances exceeding those of existing CV MDI protocols. In the worst-case scenario in which the relay is positioned equidistant between them, we find that the parties may communicate securely over a range of 14 km in standard optical fiber. Our protocol helps to overcome the rate-distance limitations of previously proposed CV MDI protocols while maintaining many of their advantages.
We study the impact of finite-size effects on the security of thermal one-way quantum cryptography. Our approach considers coherent/squeezed states at the preparation stage, on the top of which the sender adds trusted thermal noise. We compute the key rate incorporating finite-size effects, and we obtain the security threshold at different frequencies. As expected finite-size effects deteriorate the performance of thermal quantum cryptography. Our analysis is useful to quantify the impact of this degradation on relevant parameters like tolerable attenuation, transmission frequencies at which one can achieve security.
Multiparty quantum cryptography based on distributed entanglement will find its natural application in the upcoming quantum networks. The security of many multipartite device-independent (DI) protocols, such as DI conference key agreement, relies on bounding the von Neumann entropy of the parties outcomes conditioned on the eavesdroppers information, given the violation of a multipartite Bell inequality. We consider three parties testing the Mermin-Ardehali-Belinskii-Klyshko (MABK) inequality and certify the privacy of their outcomes by bounding the conditional entropy of a single partys outcome and the joint conditional entropy of two parties outcomes. From the former bound, we show that genuine multipartite entanglement is necessary to certify the privacy of a partys outcome, while the latter significantly improve previous results. We obtain the entropy bounds thanks to two general results of independent interest. The first one drastically simplifies the quantum setup of an $N$-partite Bell scenario. The second one provides an upper bound on the violation of the MABK inequality by an arbitrary $N$-qubit state, as a function of the states parameters.