No Arabic abstract
We study the impact of finite-size effects on the security of thermal one-way quantum cryptography. Our approach considers coherent/squeezed states at the preparation stage, on the top of which the sender adds trusted thermal noise. We compute the key rate incorporating finite-size effects, and we obtain the security threshold at different frequencies. As expected finite-size effects deteriorate the performance of thermal quantum cryptography. Our analysis is useful to quantify the impact of this degradation on relevant parameters like tolerable attenuation, transmission frequencies at which one can achieve security.
We derive a bound for the security of QKD with finite resources under one-way post-processing, based on a definition of security that is composable and has an operational meaning. While our proof relies on the assumption of collective attacks, unconditional security follows immediately for standard protocols like Bennett-Brassard 1984 and six-states. For single-qubit implementations of such protocols, we find that the secret key rate becomes positive when at least Nsim 10^5 signals are exchanged and processed. For any other discrete-variable protocol, unconditional security can be obtained using the exponential de Finetti theorem, but the additional overhead leads to very pessimistic estimates.
We study the impact of finite-size effects on the key rate of continuous-variable (CV) measurement-device-independent (MDI) quantum key distribution (QKD). Inspired by the parameter estimation technique developed in [Rupert textit{et al.} Phys. Rev. A textbf{90}, 062310 (2014)]~we adapt it to study CV-MDI-QKD and, assuming realistic experimental conditions, we analyze the impact of finite-size effects on the key rate. We find that, increasing the block-size, the performance of the protocol converges towards the ideal one, and that block-sizes between $10^{6}$ and $10^{9}$ data points can already provide a key rate $sim10^{-2}$ bit/use over metropolitan distances.
In this thesis we study the finite-size analysis of two continuous-variables quantum key distribution schemes. The first one is the one-way protocol using Gaussian modulation of thermal states and the other is the measurement-device-independent protocol. To do so, we adopt an efficient channel parameter estimation method based on the assumption of the Gaussian variables and the central limit theorem introduced by Ruppert et al. [Phys. Rev. A 90, 062310 (2014)]. Furthermore, we present a composable security analysis of the measurement device independent protocol for coherent attacks with a channel parameter estimation that is not based on the central limit theorem. We also investigated, in the asymptotic regime, an asymmetric situation for the authenticated parties against the eavesdropper caused by fast-fading channels. Here we assume that the eavesdropper has the full control of the communication channel and can instantaneously change its transmissivity in every use of it. We assumed the simple model of a uniform fading and addressed the cases of one-way protocols, continuous-measurement device-independent protocol in symmetric configuration and its star network extension for three users. Finally, we extended the asymptotic study of the one-way protocols using an arbitrary number of phase-encoded coherent states assuming a thermal loss channel without using a Gaussian approximation.
In a continuous-variable quantum key distribution (CV-QKD) protocol, which is based on heterodyne detection at the receiver, the application of a noiseless linear amplifier (NLA) on the received signal before the detection can be emulated by the post-selection of the detection outcome. Such a post-selection, which is also called a measurement-based NLA, requires a cut-off to produce a normalisable filter function. Increasing the cut-off with respect to the received signals results in a more faithful emulation of the NLA and nearly Gaussian output statistics at the cost of discarding more data. While recent works have shown the benefits of post-selection via an asymptotic security analysis, we undertake the first investigation of such a post-selection utilising a composable security proof in the realistic finite-size regime, where this trade-off is extremely relevant. We show that this form of post-selection can improve the secure range of a CV-QKD over lossy thermal channels if the finite block size is sufficiently large and that the optimal value for the filter cut-off is typically in the non-Gaussian regime. The relatively modest improvement in the finite-size regime as compared to the asymptotic case highlights the need for new tools to prove the security of non-Gaussian cryptographic protocols. These results also represent a quantitative assessment of a measurement-based NLA with an entangled-state input in both the Gaussian and non-Gaussian regime.
A practical quantum key distribution (QKD) protocol necessarily runs in finite time and, hence, only a finite amount of communication is exchanged. This is in contrast to most of the standard results on the security of QKD, which only hold in the limit where the number of transmitted signals approaches infinity. Here, we analyze the security of QKD under the realistic assumption that the amount of communication is finite. At the level of the general formalism, we present new results that help simplifying the actual implementation of QKD protocols: in particular, we show that symmetrization steps, which are required by certain security proofs (e.g., proofs based on de Finettis representation theorem), can be omitted in practical implementations. Also, we demonstrate how two-way reconciliation protocols can be taken into account in the security analysis. At the level of numerical estimates, we present the bounds with finite resources for ``device-independent security against collective attacks.