No Arabic abstract
Space-based transit surveys such as K2 and TESS allow the detection of small transiting planets with orbital periods beyond 10 days. Few of these warm Neptunes are currently known around stars bright enough to allow for detailed follow-up observations dedicated to their atmospheric characterization. The 21-day period and 3.95 $R_oplus$ planet HD106315c has been discovered based on the observation of two of its transits by K2. We have observed HD106315 using the 1.2m Euler telescope equipped with the EulerCam camera on two instances to confirm the transit using broad band photometry and refine the planetary period. Based on two observed transits of HD106315c, we detect its $sim$1 mmag transit and obtain a precise measurement of the planetary ephemerids, which are critical for planning further follow-up observations. We have used the attained precision together with the predicted yield from the TESS mission to evaluate the potential for ground-based confirmation of Neptune-sized planets found by TESS. We find that 1-meter-class telescopes on the ground equipped with precise photometers could substantially contribute to the follow-up of 162 TESS candidates orbiting stars with magnitudes of $V leq 14$. Out of these, 74 planets orbit stars with $V leq 12$ and 12 planets orbit $V leq 10$, which makes these candidates high-priority objects for atmospheric characterization with high-end instrumentation.
Imaging and spectroscopy of Neptunes thermal infrared emission is used to assess seasonal changes in Neptunes zonal mean temperatures between Voyager-2 observations (1989, heliocentric longitude Ls=236) and southern summer solstice (2005, Ls=270). Our aim was to analyse imaging and spectroscopy from multiple different sources using a single self-consistent radiative-transfer model to assess the magnitude of seasonal variability. Globally-averaged stratospheric temperatures measured from methane emission tend towards a quasi-isothermal structure (158-164 K) above the 0.1-mbar level, and are found to be consistent with spacecraft observations of AKARI. This remarkable consistency, despite very different observing conditions, suggests that stratospheric temporal variability, if present, is $pm$5 K at 1 mbar and $pm$3 K at 0.1 mbar during this solstice period. Conversely, ethane emission is highly variable, with abundance determinations varying by more than a factor of two. The retrieved C2H6 abundances are extremely sensitive to the details of the T(p) derivation. Stratospheric temperatures and ethane are found to be latitudinally uniform away from the south pole (assuming a latitudinally-uniform distribution of stratospheric methane). At low and midlatitudes, comparisons of synthetic Voyager-era images with solstice-era observations suggest that tropospheric zonal temperatures are unchanged since the Voyager 2 encounter, with cool mid-latitudes and a warm equator and pole. A re-analysis of Voyager/IRIS 25-50 {mu}m mapping of tropospheric temperatures and para-hydrogen disequilibrium suggests a symmetric meridional circulation with cold air rising at mid-latitudes (sub-equilibrium para-H2 conditions) and warm air sinking at the equator and poles (super-equilibrium para-H2 conditions). The most significant atmospheric changes are associated with the polar vortex (absent in 1989).
We report here on our search for excess power in photometry of Neptune collected by the K2 mission that may be due to intrinsic global oscillations of the planet Neptune. To conduct this search, we developed new methods to correct for instrumental effects such as intrapixel variability and gain variations. We then extracted and analyzed the time-series photometry of Neptune from 49 days of nearly continuous broadband photometry of the planet. We find no evidence of global oscillations and place an upper limit of $sim$5 ppm at 1000 uhz for the detection of a coherent signal. With an observed cadence of 1-minute and point-to-point scatter less than 0.01%, the photometric signal is dominated by reflected light from the Sun, which is in turn modulated by atmospheric variability of Neptune at the 2% level. A change in flux is also observed due to the increasing distance between Neptune and the K2 spacecraft, and solar variability with convection-driven solar p modes present.
We report the discovery of a $H_r = 3.4pm0.1$ dwarf planet candidate by the Pan-STARRS Outer Solar System Survey. 2010 JO$_{179}$ is red with $(g-r)=0.88 pm 0.21$, roughly round, and slowly rotating, with a period of $30.6$ hr. Estimates of its albedo imply a diameter of 600--900~km. Observations sampling the span between 2005--2016 provide an exceptionally well-determined orbit for 2010 JO$_{179}$, with a semi-major axis of $78.307pm0.009$ au, distant orbits known to this precision are rare. We find that 2010 JO$_{179}$ librates securely within the 21:5 mean-motion resonance with Neptune on hundred-megayear time scales, joining the small but growing set of known distant dwarf planets on metastable resonant orbits. These imply a substantial trans-Neptunian population that shifts between stability in high-order resonances, the detached population, and the eroding population of the scattering disk.
The transit timing variation technique (TTV) has been widely used to detect and characterize multiple planetary systems. Due to the observational biases imposed mainly by the photometric conditions and instrumentation and the high signal-to-noise required to produce primary transit observations, ground-based data acquired using small telescopes limit the technique to the follow-up of hot Jupiters. However, space-based missions such as Kepler and CoRoT have already revealed that hot Jupiters are mainly found in single systems. Thus, it is natural to question ourselves if we are properly using the observing time at hand carrying out such follow-ups, or if the use of medium-to-low quality transit light curves, combined with current standard techniques of data analysis, could be playing a main role against exoplanetary search via TTVs. The purpose of this work is to investigate to what extent ground-based observations treated with current modelling techniques are reliable to detect and characterize additional planets in already known planetary systems. To meet this goal, we simulated typical primary transit observations of a hot Jupiter mimicing an existing system, Qatar-1. To resemble ground-based observations we attempt to reproduce, by means of physically and empirically motivated relationships, the effects caused by the Earths atmosphere and the instrumental setup on the synthetic light curves. Therefore, the synthetic data present different photometric quality and transit coverage. In addition, we introduced a perturbation in the mid-transit times of the hot Jupiter, caused by an Earth-sized planet in a 3:2 mean motion resonance. Analyzing the synthetic light curves produced after certain epochs, we attempt to recover the synthetically added TTV signal by means of usual primary transit fitting techniques, and show how these can recover (or not) the TTV signal.
The asteroid (21) Lutetia is the target of a planned close encounter by the Rosetta spacecraft in July 2010. To prepare for that flyby, Lutetia has been extensively observed by a variety of astronomical facilities. We used the Hubble Space Telescope (HST) to determine the albedo of Lutetia over a wide wavelength range, extending from ~150 nm to ~700 nm. Using data from a variety of HST filters and a ground-based visible light spectrum, we employed synthetic photometry techniques to derive absolute fluxes for Lutetia. New results from ground-based measurements of Lutetias size and shape were used to convert the absolute fluxes into albedos. We present our best model for the spectral energy distribution of Lutetia over the wavelength range 120-800 nm. There appears to be a steep drop in the albedo (by a factor of ~2) for wavelengths shorter than ~300 nm. Nevertheless, the far ultraviolet albedo of Lutetia (~10%) is considerably larger than that of typical C-chondrite material (~4%). The geometric albedo at 550 nm is 16.5 +/- 1%. Lutetias reflectivity is not consistent with a metal-dominated surface at infrared or radar wavelengths, and its albedo at all wavelengths (UV-visibile-IR-radar) is larger than observed for typical primitive, chondritic material. We derive a relatively high FUV albedo of ~10%, a result that will be tested by observations with the Alice spectrograph during the Rosetta flyby of Lutetia in July 2010.