Do you want to publish a course? Click here

Neptune at Summer Solstice: Zonal Mean Temperatures from Ground-Based Observations 2003-2007

126   0   0.0 ( 0 )
 Added by Leigh Fletcher
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

Imaging and spectroscopy of Neptunes thermal infrared emission is used to assess seasonal changes in Neptunes zonal mean temperatures between Voyager-2 observations (1989, heliocentric longitude Ls=236) and southern summer solstice (2005, Ls=270). Our aim was to analyse imaging and spectroscopy from multiple different sources using a single self-consistent radiative-transfer model to assess the magnitude of seasonal variability. Globally-averaged stratospheric temperatures measured from methane emission tend towards a quasi-isothermal structure (158-164 K) above the 0.1-mbar level, and are found to be consistent with spacecraft observations of AKARI. This remarkable consistency, despite very different observing conditions, suggests that stratospheric temporal variability, if present, is $pm$5 K at 1 mbar and $pm$3 K at 0.1 mbar during this solstice period. Conversely, ethane emission is highly variable, with abundance determinations varying by more than a factor of two. The retrieved C2H6 abundances are extremely sensitive to the details of the T(p) derivation. Stratospheric temperatures and ethane are found to be latitudinally uniform away from the south pole (assuming a latitudinally-uniform distribution of stratospheric methane). At low and midlatitudes, comparisons of synthetic Voyager-era images with solstice-era observations suggest that tropospheric zonal temperatures are unchanged since the Voyager 2 encounter, with cool mid-latitudes and a warm equator and pole. A re-analysis of Voyager/IRIS 25-50 {mu}m mapping of tropospheric temperatures and para-hydrogen disequilibrium suggests a symmetric meridional circulation with cold air rising at mid-latitudes (sub-equilibrium para-H2 conditions) and warm air sinking at the equator and poles (super-equilibrium para-H2 conditions). The most significant atmospheric changes are associated with the polar vortex (absent in 1989).



rate research

Read More

The incredible longevity of Cassinis orbital mission at Saturn has provided the most comprehensive exploration of a seasonal giant planet to date. This review explores Saturns changing global temperatures, composition, and aerosol properties between northern spring and summer solstice (2015-2017), extending our previous review of Cassinis remote sensing investigations (2004-14, Fletcher et al., 2018) to the grand finale. The result is an unprecedented record of Saturns climate that spans almost half a Saturnian year, which can be used to test the seasonal predictions of radiative climate models, neutral and ion photochemistry models, and atmospheric circulation models. Hemispheric asymmetries in tropospheric and stratospheric temperatures were observed to reverse from northern winter to northern summer; spatial distributions of hydrocarbons and para-hydrogen shifted in response to atmospheric dynamics (e.g., seasonally-reversing Hadley cells, polar stratospheric vortex formation, equatorial stratospheric oscillations, and inter-hemispheric transport); and upper tropospheric and stratospheric aerosols exhibited changes in optical thickness that modulated Saturns visible colours (from blue hues to a golden appearance in the north near solstice), reflectivity, and near-infrared emission. Numerical simulations of radiative balance and photochemistry do a good job in reproducing the observed seasonal change and phase lags, but discrepancies between models and observations still persist, indicating a crucial role for atmospheric dynamics and the need to couple chemical and radiative schemes to the next generation of circulation models. With Cassinis demise, an extended study of Saturns seasons, from northern summer to autumn, will require the capabilities of ground- and space-based observatories, as we eagerly await the next orbital explorer at Saturn.
Jupiters banded structure undergoes strong temporal variations, changing the visible and infrared appearance of the belts and zones in a complex and turbulent way due to physical processes that are not yet understood. In this study we use ground-based 5-$mu$m infrared data captured between 1984 and 2018 by 8 different instruments mounted on the Infrared Telescope Facility in Hawaii and on the Very Large Telescope in Chile to analyze and characterize the long-term variability of Jupiters cloud-forming region at the 1-4 bar pressure level. The data show a large temporal variability mainly at the equatorial and tropical latitudes, with a smaller temporal variability at mid-latitudes. We also compare the 5-$mu$m-bright and -dark regions with the locations of the visible zones and belts and we find that these regions are not always co-located, specially in the southern hemisphere. We also present Lomb-Scargle and Wavelet Transform analyzes in order to look for possible periodicities of the brightness changes that could help us understand their origin and predict future events. We see that some of these variations occur periodically in time intervals of 4-8 years. The reasons of these time intervals are not understood and we explore potential connections to both convective processes in the deeper weather layer and dynamical processes in the upper troposphere and stratosphere. Finally we perform a Principal Component analysis to reveal a clear anticorrelation on the 5-$mu$m brightness changes between the North Equatorial Belt and the South Equatorial Belt, suggesting a possible connection between the changes in these belts.
113 - M. Lendl 2017
Space-based transit surveys such as K2 and TESS allow the detection of small transiting planets with orbital periods beyond 10 days. Few of these warm Neptunes are currently known around stars bright enough to allow for detailed follow-up observations dedicated to their atmospheric characterization. The 21-day period and 3.95 $R_oplus$ planet HD106315c has been discovered based on the observation of two of its transits by K2. We have observed HD106315 using the 1.2m Euler telescope equipped with the EulerCam camera on two instances to confirm the transit using broad band photometry and refine the planetary period. Based on two observed transits of HD106315c, we detect its $sim$1 mmag transit and obtain a precise measurement of the planetary ephemerids, which are critical for planning further follow-up observations. We have used the attained precision together with the predicted yield from the TESS mission to evaluate the potential for ground-based confirmation of Neptune-sized planets found by TESS. We find that 1-meter-class telescopes on the ground equipped with precise photometers could substantially contribute to the follow-up of 162 TESS candidates orbiting stars with magnitudes of $V leq 14$. Out of these, 74 planets orbit stars with $V leq 12$ and 12 planets orbit $V leq 10$, which makes these candidates high-priority objects for atmospheric characterization with high-end instrumentation.
The Solar Tower Atmospheric Cherenkov Effect Experiment (STACEE) is an atmospheric Cherenkov telescope (ACT) that uses a large mirror array to achieve a relatively low energy threshold. For sources with Crab-like spectra, at high elevations, the detector response peaks near 100 GeV. Gamma-ray burst (GRB) observations have been a high priority for the STACEE collaboration since the inception of the experiment. We present the results of 20 GRB follow-up observations at times ranging from 3 minutes to 15 hours after the burst triggers. Where redshift measurements are available, we place constraints on the intrinsic high-energy spectra of the bursts.
178 - T. Sumi , D.P. Bennett , I.A. Bond 2009
We present the discovery of a Neptune-mass planet OGLE-2007-BLG-368Lb with a planet-star mass ratio of q=[9.5 +/- 2.1] x 10^{-5} via gravitational microlensing. The planetary deviation was detected in real-time thanks to the high cadence of the MOA survey, real-time light curve monitoring and intensive follow-up observations. A Bayesian analysis returns the stellar mass and distance at M_l = 0.64_{-0.26}^{+0.21} M_sun and D_l = 5.9_{-1.4}^{+0.9} kpc, respectively, so the mass and separation of the planet are M_p = 20_{-8}^{+7} M_oplus and a = 3.3_{-0.8}^{+1.4} AU, respectively. This discovery adds another cold Neptune-mass planet to the planetary sample discovered by microlensing, which now comprise four cold Neptune/Super-Earths, five gas giant planets, and another sub-Saturn mass planet whose nature is unclear. The discovery of these ten cold exoplanets by the microlensing method implies that the mass ratio function of cold exoplanets scales as dN_{rm pl}/dlog q propto q^{-0.7 +/- 0.2} with a 95% confidence level upper limit of n < -0.35 (where dN_{rm pl}/dlog q propto q^n). As microlensing is most sensitive to planets beyond the snow-line, this implies that Neptune-mass planets are at least three times more common than Jupiters in this region at the 95% confidence level.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا