No Arabic abstract
The transit timing variation technique (TTV) has been widely used to detect and characterize multiple planetary systems. Due to the observational biases imposed mainly by the photometric conditions and instrumentation and the high signal-to-noise required to produce primary transit observations, ground-based data acquired using small telescopes limit the technique to the follow-up of hot Jupiters. However, space-based missions such as Kepler and CoRoT have already revealed that hot Jupiters are mainly found in single systems. Thus, it is natural to question ourselves if we are properly using the observing time at hand carrying out such follow-ups, or if the use of medium-to-low quality transit light curves, combined with current standard techniques of data analysis, could be playing a main role against exoplanetary search via TTVs. The purpose of this work is to investigate to what extent ground-based observations treated with current modelling techniques are reliable to detect and characterize additional planets in already known planetary systems. To meet this goal, we simulated typical primary transit observations of a hot Jupiter mimicing an existing system, Qatar-1. To resemble ground-based observations we attempt to reproduce, by means of physically and empirically motivated relationships, the effects caused by the Earths atmosphere and the instrumental setup on the synthetic light curves. Therefore, the synthetic data present different photometric quality and transit coverage. In addition, we introduced a perturbation in the mid-transit times of the hot Jupiter, caused by an Earth-sized planet in a 3:2 mean motion resonance. Analyzing the synthetic light curves produced after certain epochs, we attempt to recover the synthetically added TTV signal by means of usual primary transit fitting techniques, and show how these can recover (or not) the TTV signal.
We present an efficient analytical method to predict the maximum transit timing variations of a circumbinary exoplanet, given some basic parameters of the host binary. We derive an analytical model giving limits on the potential location of transits for coplanar planets orbiting eclipsing binaries, then test it against numerical N-body simulations of a distribution of binaries and planets. We also show the application of the analytic model to Kepler-16b, -34b and -35b. The resulting method is fast, efficient and is accurate to approximately 1% in predicting limits on possible times of transits over a three-year observing campaign. The model can easily be used to, for example, place constraints on transit timing while performing circumbinary planet searches on large datasets. It is adaptable to use in situations where some or many of the planet and binary parameters are unknown.
We have observed 7 new transits of the `hot Jupiter WASP-5b using a 61 cm telescope located in New Zealand, in order to search for transit timing variations (TTVs) which can be induced by additional bodies existing in the system. When combined with other available photometric and radial velocity (RV) data, we find that its transit timings do not match a linear ephemeris; the best fit chi^2 values is 32.2 with 9 degrees of freedom which corresponds to a confidence level of 99.982 % or 3.7 sigma. This result indicates that excess variations of transit timings has been observed, due either to unknown systematic effects or possibly to real TTVs. The TTV amplitude is as large as 50 s, and if this is real, it cannot be explained by other effects than that due to an additional body or bodies. From the RV data, we put an upper limit on the RV amplitude caused by the possible secondary body (planet) as 21 m s^{-1}, which corresponds to its mass of 22-70 M_{Earth} over the orbital period ratio of the two planets from 0.2 to 5.0. From the TTVs data, using the numerical simulations, we place more stringent limits down to 2 M_{Earth} near 1:2 and 2:1 mean motion resonances (MMRs) with WASP-5b at the 3 sigma level, assuming that the two planets are co-planer. We also put an upper limit on excess of Trojan mass as 43 M_{Earth} (3 sigma) using both RV and photometric data. We also find that if the possible secondary planet has non- or a small eccentricity, its orbit would likely be near low-order MMRs. Further follow-up photometric and spectroscopic observations will be required to confirm the reality of the TTV signal, and results such as these will provide important information for the migration mechanisms of planetary systems.
During its four years of photometric observations, the Kepler space telescope detected thousands of exoplanets and exoplanet candidates. One of Keplers greatest heritages has been the confirmation and characterization of hundreds of multi-planet systems via Transit Timing Variations (TTVs). However, there are many interesting candidate systems displaying TTVs on such long time scales that the existing Kepler observations are of insufficient length to confirm and characterize them by means of this technique. To continue with Keplers unique work we have organized the Kepler Object of Interest Network (KOINet). The goals of KOINet are, among others, to complete the TTV curves of systems where Kepler did not cover the interaction timescales well. KOINet has been operational since March, 2014. Here we show some promising first results obtained from analyzing seven primary transits of KOI-0410.01, KOI-0525.01, KOI-0760.01, and KOI-0902.01 in addition to Kepler data, acquired during the first and second observing seasons of KOINet. While carefully choosing the targets we set demanding constraints about timing precision (at least 1 minute) and photometric precision (as good as 1 part per thousand) that were achieved by means of our observing strategies and data analysis techniques. For KOI-0410.01, new transit data revealed a turn-over of its TTVs. We carried out an in-depth study of the system, that is identified in the NASAs Data Validation Report as false positive. Among others, we investigated a gravitationally-bound hierarchical triple star system, and a planet-star system. While the simultaneous transit fitting of ground and space-based data allowed for a planet solution, we could not fully reject the three-star scenario. New data, already scheduled in the upcoming 2018 observing season, will set tighter constraints on the nature of the system.
We report nine new transit epochs of the extrasolar planet, observed in the Bessell-I band with SOAR at the Cerro Pachon Observatory and with the SMARTS 1-m Telescope at CTIO, between August 2008 and October 2009. The new transits have been combined with all previously published transit data for this planet to provide a new Transit Timing Variations (TTVs) analysis of its orbit. We find no evidence of TTVs RMS variations larger than 1 min over a 3 year time span. This result discards the presence of planets more massive than about 5 M_earth, 1 M_earth and 2 M_earth around the 1:2, 5:3 and 2:1 orbital resonances. These new detection limits exceed by ~5-30 times the limits imposed by current radial velocity observations in the Mean Motion Resonances of this system. Our search for the variation of other parameters, such as orbital inclination and transit depth also yields negative results over the total time span of the transit observations. This result supports formation theories that predict a paucity of planetary companions to Hot Jupiters.
Homogeneous observations and careful analysis of transit light curves can lead to the identification of transit timing variations (TTVs). TrES-2 is one of few exoplanets, which offer the matchless possibility to combine long-term ground-based observations with continuous satellite data. Our research aimed at the search for TTVs that would be indicative of perturbations from additional bodies in the system. We also wanted to refine the system parameters and the orbital elements. We obtained 44 ground-based light curves of 31 individual transit events of TrES-2. Eight 0.2 - 2.2-m telescopes located at six observatories in Germany, Poland and Spain were used. In addition, we analysed 18 quarters (Q0-Q17) of observational data from NASAs space telescope Kepler including 435 individual transit events and 11 publicly available ground-based light curves. Assuming different limb darkening (LD) laws we performed an analysis for all light curves and redetermined the parameters of the system. We also carried out a joint analysis of the ground- and space-based data. The long observation period of seven years (2007-2013) allowed a very precise redetermination of the transit ephemeris. For a total of 490 transit light curves of TrES-2, the time of transit mid-point was determined. The transit times support neither variations on long time-scale nor on short time-scales. The nearly continuous observations of Kepler show no statistically significant increase or decrease in the orbital inclination i and the transit duration D. Only the transit depth shows a slight increase which could be an indication of an increasing stellar activity. In general, system parameters obtained by us were found to be in agreement with previous studies but are the most precise values to date.