Do you want to publish a course? Click here

Kondo-Ising and Tight-Binding Models for TmB4

118   0   0.0 ( 0 )
 Added by John Shin
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

In $TmB_4$, localized electrons with a large magnetic moment interact with metallic electrons in boron-derived bands. We examine the nature of $TmB_4$ using full-relativistic ab-initio density functional theory calculations, approximate tight-binding Hamiltonian results, and the development of an effective Kondo-Ising model for this system. Features of the Fermi surface relating to the anisotropic conduction of charge are discussed. The observed magnetic moment $sim 6 , mu_B$ is argued to require a subtle crystal field effect in metallic systems, involving a flipped sign of the effective charges surrounding a Tm ion. The role of on-site quantum dynamics in the resulting Kondo-Ising type impurity model are highlighted. From this model, elimination of the conduction electrons will lead to spin-spin (RKKY-type) interaction of Ising character required to understand the observed fractional magnetization plateaus in $TmB_4$.



rate research

Read More

For the strongly correlated topological insulator SmB6 we discuss the influence of a 2x1 reconstruction of the (001) surface on the topological surface states. Depending on microscopic details, the reconstruction can be a weak or a strong perturbation to the electronic states. While the former leads to a weak backfolding of surface bands only, the latter can modify the surface-state dispersion and lead to a Lifshitz transition. We analyze the quasiparticle interference signal: while this tends to be weak in models for SmB6 in the absence of surface reconstruction, we find that the 2x1 reconstruction can induce novel peaks. We discuss experimental implications.
Parafermions are emergent quasi-particles which generalize Majorana fermions and possess intriguing anyonic properties. The theoretical investigation of effective models hosting them is gaining considerable importance in view of present-day condensed-matter realizations where they have been predicted to appear. Here we study the simplest number-conserving model of particle-like Fock parafermions, namely a one-dimensional tight-binding model. By means of numerical simulations based on exact diagonalization and on the density-matrix renormalization group, we prove that this quadratic model is nonintegrable and displays bound states in the spectrum, due to its peculiar anyonic properties. Moreover, we discuss its many-body physics, characterizing anyonic correlation functions and discussing the underlying Luttinger-liquid theory at low energies. In the case when Fock parafermions behave as fractionalized fermions, we are able to unveil interesting similarities with two counter-propagating edge modes of two neighboring Laughlin states at filling 1/3.
We analyze the ground-state energy, local spin correlation, impurity spin polarization, impurity-induced magnetization, and corresponding zero-field susceptibilities of the symmetric single-impurity Kondo model on a tight-binding chain with bandwidth $W=2{cal D}$ and coupling strength $J_{rm K}$. We compare perturbative results and variational upper bounds from Yosida, Gutzwiller, and first-order Lanczos wave functions to the numerically exact data obtained from the Density-Matrix Renormalization Group (DMRG) and from the Numerical Renormalization Group (NRG) methods. The Gutzwiller variational approach becomes exact in the strong-coupling limit and reproduces the ground-state properties from DMRG and NRG for large couplings. We calculate the impurity spin polarization and its susceptibility in the presence of magnetic fields that are applied globally/locally to the impurity spin. The Yosida wave function provides qualitatively correct results in the weak-coupling limit. In DMRG, chains with about $10^3$ sites are large enough to describe the susceptibilities down to $J_{rm K}/{cal D}approx 0.5$. For smaller Kondo couplings, only the NRG provides reliable results for a general host-electron density of states $rho_0(epsilon)$. To compare with results from Bethe Ansatz, we study the impurity-induced magnetization and zero-field susceptibility. For small Kondo couplings, the zero-field susceptibilities at zero temperature approach $chi_0(J_{rm K}ll {cal D})/(gmu_{rm B})^2approx exp[1/(rho_0(0)J_{rm K})]/(2C{cal D}sqrt{pi e rho_0(0)J_{rm K}})$, where $ln(C)$ is the regularized first inverse moment of the density of states. Using NRG, we determine the universal sub-leading corrections up to second order in $rho_0(0)J_{rm K}$.
We derive an effective quasiparticle tight-binding model which is able to describe with high accuracy the low-energy electronic structure of Sr2RuO4 obtained by means of low temperature angle resolved photoemission spectroscopy. Such approach is applied to determine the momentum and orbital dependent effective masses and velocities of the electron quasiparticles close to the Fermi level. We demonstrate that the model can provide, among the various computable physical quantities, a very good agreement with the specific heat coefficient and the plasma frequency. Its use is underlined as a realistic input in the analysis of the possible electronic mechanisms related to the superconducting state of Sr2RuO4.
156 - M. Baublitz , C. Lane , Hsin Lin 2014
Half-metallicity in materials has been a subject of extensive research due to its potential for applications in spintronics. Ferromagnetic manganites have been seen as a good candidate, and aside from a small minority-spin pocket observed in La$_{2-2x}$Sr$_{1+2x}$Mn$_{2}$O$_{7}$ $(x=0.38)$, transport measurements show that ferromagnetic manganites essentially behave like half metals. Here we develop robust tight-binding models to describe the electronic band structure of the majority as well as minority spin states of ferromagnetic, spin-canted antiferromagnetic, and fully antiferromagnetic bilayer manganites. Both the bilayer coupling between the MnO$_2$ planes and the mixing of the $|x^2 - y^2>$ and $|3z^2 - r^2>$ Mn 3d orbitals play an important role in the subtle behavior of the bilayer splitting. Effects of $k_z$ dispersion are included.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا