Do you want to publish a course? Click here

Anyonic tight-binding models of parafermions and of fractionalized fermions

95   0   0.0 ( 0 )
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Parafermions are emergent quasi-particles which generalize Majorana fermions and possess intriguing anyonic properties. The theoretical investigation of effective models hosting them is gaining considerable importance in view of present-day condensed-matter realizations where they have been predicted to appear. Here we study the simplest number-conserving model of particle-like Fock parafermions, namely a one-dimensional tight-binding model. By means of numerical simulations based on exact diagonalization and on the density-matrix renormalization group, we prove that this quadratic model is nonintegrable and displays bound states in the spectrum, due to its peculiar anyonic properties. Moreover, we discuss its many-body physics, characterizing anyonic correlation functions and discussing the underlying Luttinger-liquid theory at low energies. In the case when Fock parafermions behave as fractionalized fermions, we are able to unveil interesting similarities with two counter-propagating edge modes of two neighboring Laughlin states at filling 1/3.



rate research

Read More

In $TmB_4$, localized electrons with a large magnetic moment interact with metallic electrons in boron-derived bands. We examine the nature of $TmB_4$ using full-relativistic ab-initio density functional theory calculations, approximate tight-binding Hamiltonian results, and the development of an effective Kondo-Ising model for this system. Features of the Fermi surface relating to the anisotropic conduction of charge are discussed. The observed magnetic moment $sim 6 , mu_B$ is argued to require a subtle crystal field effect in metallic systems, involving a flipped sign of the effective charges surrounding a Tm ion. The role of on-site quantum dynamics in the resulting Kondo-Ising type impurity model are highlighted. From this model, elimination of the conduction electrons will lead to spin-spin (RKKY-type) interaction of Ising character required to understand the observed fractional magnetization plateaus in $TmB_4$.
Recent experimental advances enable the manipulation of quantum matter by exploiting the quantum nature of light. However, paradigmatic exactly solvable models, such as the Dicke, Rabi or Jaynes-Cummings models for quantum-optical systems, are scarce in the corresponding solid-state, quantum materials context. Focusing on the long-wavelength limit for the light, here, we provide such an exactly solvable model given by a tight-binding chain coupled to a single cavity mode via a quantized version of the Peierls substitution. We show that perturbative expansions in the light-matter coupling have to be taken with care and can easily lead to a false superradiant phase. Furthermore, we provide an analytical expression for the groundstate in the thermodynamic limit, in which the cavity photons are squeezed by the light-matter coupling. In addition, we derive analytical expressions for the electronic single-particle spectral function and optical conductivity. We unveil quantum Floquet engineering signatures in these dynamical response functions, such as analogs to dynamical localization and replica side bands, complementing paradigmatic classical Floquet engineering results. Strikingly, the Drude weight in the optical conductivity of the electrons is partially suppressed by the presence of a single cavity mode through an induced electron-electron interaction.
Quasiparticle poisoning, expected to arise during the measurement of Majorana zero mode state, poses a fundamental problem towards the realization of Majorana-based quantum computation. Parafermions, a natural generalization of Majorana fermions, can encode topological qudits immune to quasiparticle poisoning. While parafermions are expected to emerge in superconducting fractional quantum Hall systems, they are not yet attainable with current technology. To bypass this problem, we employ a photonic quantum simulator to experimentally demonstrate the key components of parafermion-based universal quantum computation. Our contributions in this article are twofold. First, by manipulating the photonic states, we realize Clifford operator Berry phases that correspond to braiding statistics of parafermions. Second, we investigate the quantum contextuality in a topological system for the first time by demonstrating the contextuality of parafermion encoded qudit states. Importantly, we find that the topologically-encoded contextuality opens the way to magic state distillation, while both the contextuality and the braiding-induced Clifford gates are resilient against local noise. By introducing contextuality, our photonic quantum simulation provides the first step towards a physically robust methodology for realizing topological quantum computation.
The experimental discovery of the fractional Hall conductivity in two-dimensional electron gases revealed new types of quantum particles, called anyons, which are beyond bosons and fermions as they possess fractionalized exchange statistics. These anyons are usually studied deep inside an insulating topological phase. It is natural to ask whether such fractionalization can be detected more broadly, say near a phase transition from a conventional to a topological phase. To answer this question, we study a strongly correlated quantum phase transition between a topological state, called a $mathbb{Z}_2$ quantum spin liquid, and a conventional superfluid using large-scale quantum Monte Carlo simulations. Our results show that the universal conductivity at the quantum critical point becomes a simple fraction of its value at the conventional insulator-to-superfluid transition. Moreover, a dynamically self-dual optical conductivity emerges at low temperatures above the transition point, indicating the presence of the elusive vison particles. Our study opens the door for the experimental detection of anyons in a broader regime, and has ramifications in the study of quantum materials, programmable quantum simulators, and ultra-cold atomic gases. In the latter case, we discuss the feasibility of measurements in optical lattices using current techniques.
399 - Yacine Ikhlef , John Cardy 2009
We define parafermionic observables in various lattice loop models, including examples where no Kramers-Wannier duality holds. For a particular rhombic embedding of the lattice in the plane and a value of the parafermionic spin these variables are discretely holomorphic (they satisfy a lattice version of the Cauchy-Riemann equations) as long as the Boltzmann weights satisfy certain linear constraints. In the cases considered, the weights then also satisfy the critical Yang-Baxter equations, with the spectral parameter being related linearly to the angle of the elementary rhombus.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا