Do you want to publish a course? Click here

A Minimal tight-binding model for ferromagnetic canted bilayer manganites

151   0   0.0 ( 0 )
 Added by Christopher Lane
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

Half-metallicity in materials has been a subject of extensive research due to its potential for applications in spintronics. Ferromagnetic manganites have been seen as a good candidate, and aside from a small minority-spin pocket observed in La$_{2-2x}$Sr$_{1+2x}$Mn$_{2}$O$_{7}$ $(x=0.38)$, transport measurements show that ferromagnetic manganites essentially behave like half metals. Here we develop robust tight-binding models to describe the electronic band structure of the majority as well as minority spin states of ferromagnetic, spin-canted antiferromagnetic, and fully antiferromagnetic bilayer manganites. Both the bilayer coupling between the MnO$_2$ planes and the mixing of the $|x^2 - y^2>$ and $|3z^2 - r^2>$ Mn 3d orbitals play an important role in the subtle behavior of the bilayer splitting. Effects of $k_z$ dispersion are included.



rate research

Read More

We present a systematic derivation of a minimal five-band tight-binding model for the description of the electronic structure of the recently discovered quasi one-dimensional superconductor K2Cr3As3. Taking as a reference the density-functional theory (DFT) calculation, we use the outcome of a Lowdin procedure to refine a Wannier projection and fully exploit the predominant weight at the Fermi level of the states having the same symmetry of the crystal structure. Such states are described in terms of five atomic-like d orbitals: four planar orbitals, two dxy and two dx2-y2, and a single out-of-plane one, dz2 . We show that this minimal model reproduces with great accuracy the DFT band structure in a broad energy window around the Fermi energy. Moreover, we derive an explicit simplified analytical expression of such model, which includes three nearest-neighbor hopping terms along the z direction and one nearest-neighbor term within the xy plane. This model captures very efficiently the energy spectrum of the system and, consequently, can be used to study transport properties, superconductivity and dynamical effects in this novel class of superconductors.
We derive an effective quasiparticle tight-binding model which is able to describe with high accuracy the low-energy electronic structure of Sr2RuO4 obtained by means of low temperature angle resolved photoemission spectroscopy. Such approach is applied to determine the momentum and orbital dependent effective masses and velocities of the electron quasiparticles close to the Fermi level. We demonstrate that the model can provide, among the various computable physical quantities, a very good agreement with the specific heat coefficient and the plasma frequency. Its use is underlined as a realistic input in the analysis of the possible electronic mechanisms related to the superconducting state of Sr2RuO4.
For the strongly correlated topological insulator SmB6 we discuss the influence of a 2x1 reconstruction of the (001) surface on the topological surface states. Depending on microscopic details, the reconstruction can be a weak or a strong perturbation to the electronic states. While the former leads to a weak backfolding of surface bands only, the latter can modify the surface-state dispersion and lead to a Lifshitz transition. We analyze the quasiparticle interference signal: while this tends to be weak in models for SmB6 in the absence of surface reconstruction, we find that the 2x1 reconstruction can induce novel peaks. We discuss experimental implications.
110 - C.D. Batista 2000
Using the Lanczos method in linear chains we study the double exchange model in the low concentration limit, including an antiferromagnetic super-exchange K. In the strong coupling limit we find that the ground state contains ferromagnetic polarons whose length is very sensitive to the value of K/t. We investigate the dispersion relation, the trapping by impurities, and the interaction between these polarons. As the overlap between polarons increases, by decreasing K/t, the effective interaction between them changes from antiferromagnetic to ferromagnetic. The scaling to the thermodynamic limit suggests an attractive interaction in the strong coupling regime (J_h > t) and no binding in the weak limit (J_h simeq t).
Artificial graphene consisting of honeycomb lattices other than the atomic layer of carbon has been shown to exhibit electronic properties similar to real graphene. Here, we reverse the argument to show that transport properties of real graphene can be captured by simulations using theoretical artificial graphene. To prove this, we first derive a simple condition, along with its restrictions, to achieve band structure invariance for a scalable graphene lattice. We then present transport measurements for an ultraclean suspended single-layer graphene pn junction device, where ballistic transport features from complex Fabry-Perot interference (at zero magnetic field) to the quantum Hall effect (at unusually low field) are observed and are well reproduced by transport simulations based on properly scaled single-particle tight-binding models. Our findings indicate that transport simulations for graphene can be efficiently performed with a strongly reduced number of atomic sites, allowing for reliable predictions for electric properties of complex graphene devices. We demonstrate the capability of the model by applying it to predict so-far unexplored gate-defined conductance quantization in single-layer graphene.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا