No Arabic abstract
We analyze the ground-state energy, local spin correlation, impurity spin polarization, impurity-induced magnetization, and corresponding zero-field susceptibilities of the symmetric single-impurity Kondo model on a tight-binding chain with bandwidth $W=2{cal D}$ and coupling strength $J_{rm K}$. We compare perturbative results and variational upper bounds from Yosida, Gutzwiller, and first-order Lanczos wave functions to the numerically exact data obtained from the Density-Matrix Renormalization Group (DMRG) and from the Numerical Renormalization Group (NRG) methods. The Gutzwiller variational approach becomes exact in the strong-coupling limit and reproduces the ground-state properties from DMRG and NRG for large couplings. We calculate the impurity spin polarization and its susceptibility in the presence of magnetic fields that are applied globally/locally to the impurity spin. The Yosida wave function provides qualitatively correct results in the weak-coupling limit. In DMRG, chains with about $10^3$ sites are large enough to describe the susceptibilities down to $J_{rm K}/{cal D}approx 0.5$. For smaller Kondo couplings, only the NRG provides reliable results for a general host-electron density of states $rho_0(epsilon)$. To compare with results from Bethe Ansatz, we study the impurity-induced magnetization and zero-field susceptibility. For small Kondo couplings, the zero-field susceptibilities at zero temperature approach $chi_0(J_{rm K}ll {cal D})/(gmu_{rm B})^2approx exp[1/(rho_0(0)J_{rm K})]/(2C{cal D}sqrt{pi e rho_0(0)J_{rm K}})$, where $ln(C)$ is the regularized first inverse moment of the density of states. Using NRG, we determine the universal sub-leading corrections up to second order in $rho_0(0)J_{rm K}$.
We analyze the ground-state energy, magnetization, magnetic susceptibility, and Kondo screening cloud of the symmetric single-impurity Anderson model (SIAM) that is characterized by the band width $W$, the impurity interaction strength $U$, and the local hybridization $V$. We compare Gutzwiller variational and magnetic Hartree-Fock results in the thermodynamic limit with numerically exact data from the Density-Matrix Renormalization Group (DMRG) method on large rings. To improve the DMRG performance, we use a canonical transformation to map the SIAM onto a chain with half the system size and open boundary conditions. We compare to Bethe-Ansatz results for the ground-state energy, magnetization, and spin susceptibility that become exact in the wide-band limit. Our detailed comparison shows that the field-theoretical description is applicable to the SIAM on a ring for a broad parameter range. Hartree-Fock theory gives an excellent ground-state energy and local moment for intermediate and strong interactions. However, it lacks spin fluctuations and thus cannot screen the impurity spin. The Gutzwiller variational energy bound becomes very poor for large interactions because it does not describe properly the charge fluctuations. Nevertheless, the Gutzwiller approach provides a qualitatively correct description of the zero-field susceptibility and the Kondo screening cloud. The DMRG provides excellent data for the ground-state energy and the magnetization for finite external fields. At strong interactions, finite-size effects make it extremely difficult to recover the exponentially large zero-field susceptibility and the mesoscopically large Kondo screening cloud.
For the strongly correlated topological insulator SmB6 we discuss the influence of a 2x1 reconstruction of the (001) surface on the topological surface states. Depending on microscopic details, the reconstruction can be a weak or a strong perturbation to the electronic states. While the former leads to a weak backfolding of surface bands only, the latter can modify the surface-state dispersion and lead to a Lifshitz transition. We analyze the quasiparticle interference signal: while this tends to be weak in models for SmB6 in the absence of surface reconstruction, we find that the 2x1 reconstruction can induce novel peaks. We discuss experimental implications.
In $TmB_4$, localized electrons with a large magnetic moment interact with metallic electrons in boron-derived bands. We examine the nature of $TmB_4$ using full-relativistic ab-initio density functional theory calculations, approximate tight-binding Hamiltonian results, and the development of an effective Kondo-Ising model for this system. Features of the Fermi surface relating to the anisotropic conduction of charge are discussed. The observed magnetic moment $sim 6 , mu_B$ is argued to require a subtle crystal field effect in metallic systems, involving a flipped sign of the effective charges surrounding a Tm ion. The role of on-site quantum dynamics in the resulting Kondo-Ising type impurity model are highlighted. From this model, elimination of the conduction electrons will lead to spin-spin (RKKY-type) interaction of Ising character required to understand the observed fractional magnetization plateaus in $TmB_4$.
Recent experimental advances enable the manipulation of quantum matter by exploiting the quantum nature of light. However, paradigmatic exactly solvable models, such as the Dicke, Rabi or Jaynes-Cummings models for quantum-optical systems, are scarce in the corresponding solid-state, quantum materials context. Focusing on the long-wavelength limit for the light, here, we provide such an exactly solvable model given by a tight-binding chain coupled to a single cavity mode via a quantized version of the Peierls substitution. We show that perturbative expansions in the light-matter coupling have to be taken with care and can easily lead to a false superradiant phase. Furthermore, we provide an analytical expression for the groundstate in the thermodynamic limit, in which the cavity photons are squeezed by the light-matter coupling. In addition, we derive analytical expressions for the electronic single-particle spectral function and optical conductivity. We unveil quantum Floquet engineering signatures in these dynamical response functions, such as analogs to dynamical localization and replica side bands, complementing paradigmatic classical Floquet engineering results. Strikingly, the Drude weight in the optical conductivity of the electrons is partially suppressed by the presence of a single cavity mode through an induced electron-electron interaction.
The Kondo resonance at the Fermi level is well-established for the electronic structure of Ce (f1 electron) and Yb (f1 hole) based systems. In this work, we report complementary experimental and theoretical studies on the Kondo resonance in Pr-based f2 system, PrTi2Al20. Using Pr 3d-4f resonant photoemission spectroscopy and single impurity Anderson model (SIAM) calculations including the full multiplets of Pr ions, we show that an f2 system can also give rise to a Kondo resonance at the Fermi level. The Kondo resonance peak is experimentally observed through a final-state-multiplet dependent resonance and is reproduced with properly tuned hybridization strength in SIAM calculations.