Do you want to publish a course? Click here

A Posteriori Analysis and Efficient Refinement Strategies for the Poisson-Boltzmann Equation

170   0   0.0 ( 0 )
 Added by Jehanzeb Chaudhry
 Publication date 2017
  fields
and research's language is English




Ask ChatGPT about the research

The Poisson-Boltzmann equation (PBE) models the electrostatic interactions of charged bodies such as molecules and proteins in an electrolyte solvent. The PBE is a challenging equation to solve numerically due to the presence of singularities, discontinuous coefficients and boundary conditions. Hence, there is often large error in the numerical solution of the PBE that needs to be quantified. In this work, we use adjoint based a posteriori analysis to accurately quantify the error in an important quantity of interest, the solvation free energy, for the finite element solution of the PBE. We identify various sources of error and propose novel refinement strategies based on a posteriori error estimates.



rate research

Read More

The Poisson-Boltzmann equation is a widely used model to study the electrostatics in molecular solvation. Its numerical solution using a boundary integral formulation requires a mesh on the molecular surface only, yielding accurate representations of the solute, which is usually a complicated geometry. Here, we utilize adjoint-based analyses to form two goal-oriented error estimates that allows us to determine the contribution of each discretization element (panel) to the numerical error in the solvation free energy. This information is useful to identify high-error panels to then refine them adaptively to find optimal surface meshes. We present results for spheres and real molecular geometries, and see that elements with large error tend to be in regions where there is a high electrostatic potential. We also find that even though both estimates predict different total errors, they have similar performance as part of an adaptive mesh refinement scheme. Our test cases suggest that the adaptive mesh refinement scheme is very effective, as we are able to reduce the error one order of magnitude by increasing the mesh size less than 20%. This result sets the basis towards efficient automatic mesh refinement schemes that produce optimal meshes for solvation energy calculations.
103 - Lijie Ji , Yanlai Chen , Zhenli Xu 2018
In numerical simulations of many charged systems at the micro/nano scale, a common theme is the repeated solution of the Poisson-Boltzmann equation. This task proves challenging, if not entirely infeasible, largely due to the nonlinearity of the equation and the high dimensionality of the physical and parametric domains with the latter emulating the system configuration. In this paper, we for the first time adapt a mathematically rigorous and computationally efficient model order reduction paradigm, the so-called reduced basis method (RBM), to mitigate this challenge. We adopt a finite difference method as the mandatory underlying scheme to produce the {em truth approximations} of the RBM upon which the fast algorithm is built and its performance is measured against. Numerical tests presented in this paper demonstrate the high efficiency and accuracy of the fast algorithm, the reliability of its error estimation, as well as its capability in effectively capturing the boundary layer.
215 - K. Mitra , M. Vohralik 2021
The Richards equation is commonly used to model the flow of water and air through soil, and it serves as a gateway equation for multiphase flows through porous media. It is a nonlinear advection-reaction-diffusion equation that exhibits both parabolic-hyperbolic and parabolic-elliptic kinds of degeneracies. In this study, we provide reliable, fully computable, and locally space-time efficient a posteriori error bounds for numerical approximations of the fully degenerate Richards equation. For showing global reliability, a nonlocal-in-time error estimate is derived individually for the time-integrated $H^1(H^{-1})$, $L^2(L^2)$, and the $L^2(H^1)$ errors. A maximum principle and a degeneracy estimator are employed for the last one. Global and local space-time efficiency error bounds are then obtained in a standard $H^1(H^{-1})cap L^2(H^1)$ norm. The reliability and efficiency norms employed coincide when there is no nonlinearity. Moreover, error contributors such as flux nonconformity, time discretization, quadrature, linearization, and data oscillation are identified and separated. The estimates are also valid in a setting where iterative linearization with inexact solvers is considered. Numerical tests are conducted for nondegenerate and degenerate cases having exact solutions, as well as for a realistic case. It is shown that the estimators correctly identify the errors up to a factor of the order of unity.
This work further improves the pseudo-transient approach for the Poisson Boltzmann equation (PBE) in the electrostatic analysis of solvated biomolecules. The numerical solution of the nonlinear PBE is known to involve many difficulties, such as exponential nonlinear term, strong singularity by the source terms, and complex dielectric interface. Recently, a pseudo-time ghost-fluid method (GFM) has been developed in [S. Ahmed Ullah and S. Zhao, Applied Mathematics and Computation, 380, 125267, (2020)], by analytically handling both nonlinearity and singular sources. The GFM interface treatment not only captures the discontinuity in the regularized potential and its flux across the molecular surface, but also guarantees the stability and efficiency of the time integration. However, the molecular surface definition based on the MSMS package is known to induce instability in some cases, and a nontrivial Lagrangian-to-Eulerian conversion is indispensable for the GFM finite difference discretization. In this paper, an Eulerian Solvent Excluded Surface (ESES) is implemented to replace the MSMS for defining the dielectric interface. The electrostatic analysis shows that the ESES free energy is more accurate than that of the MSMS, while being free of instability issues. Moreover, this work explores, for the first time in the PBE literature, adaptive time integration techniques for the pseudo-transient simulations. A major finding is that the time increment $Delta t$ should become smaller as the time increases, in order to maintain the temporal accuracy. This is opposite to the common practice for the steady state convergence, and is believed to be due to the PBE nonlinearity and its time splitting treatment. Effective adaptive schemes have been constructed so that the pseudo-time GFM methods become more efficient than the constant $Delta t$ ones.
248 - Sebastien Boyaval 2013
We consider Chorin-Temam scheme (the simplest pressure-correction projection method) for the time-discretization of an unstationary Stokes problem. Inspired by the analyses of the Backward Euler scheme performed by C.Bernardi and R.Verfurth, we derive a posteriori estimators for the error on the velocity gradient in L2 norm. Our invesigation is supported by numerical experiments.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا