We consider Chorin-Temam scheme (the simplest pressure-correction projection method) for the time-discretization of an unstationary Stokes problem. Inspired by the analyses of the Backward Euler scheme performed by C.Bernardi and R.Verfurth, we derive a posteriori estimators for the error on the velocity gradient in L2 norm. Our invesigation is supported by numerical experiments.
In two dimensions, we propose and analyze an a posteriori error estimator for finite element approximations of the stationary Navier Stokes equations with singular sources on Lipschitz, but not necessarily convex, polygonal domains. Under a smallness assumption on the continuous and discrete solutions, we prove that the devised error estimator is reliable and locally efficient. We illustrate the theory with numerical examples.
We present a residual-based a posteriori error estimator for the hybrid high-order (HHO) method for the Stokes model problem. Both the proposed HHO method and error estimator are valid in two and three dimensions and support arbitrary approximation orders on fairly general meshes. The upper bound and lower bound of the error estimator are proved, in which proof, the key ingredient is a novel stabilizer employed in the discrete scheme. By using the given estimator, adaptive algorithm of HHO method is designed to solve model problem. Finally, the expected theoretical results are numerically demonstrated on a variety of meshes for model problem.
For the Stokes equation over 2D and 3D domains, explicit a posteriori and a priori error estimation are novelly developed for the finite element solution. The difficulty in handling the divergence-free condition of the Stokes equation is solved by utilizing the extended hypercircle method along with the Scott-Vogelius finite element scheme. Since all terms in the error estimation have explicit values, by further applying the interval arithmetic and verified computing algorithms, the computed results provide rigorous estimation for the approximation error. As an application of the proposed error estimation, the eigenvalue problem of the Stokes operator is considered and rigorous bounds for the eigenvalues are obtained. The efficiency of proposed error estimation is demonstrated by solving the Stokes equation on both convex and non-convex 3D domains.
In this paper, we analyse a Vector Penalty Projection Scheme (see [1]) to treat the displacement of a moving body in incompressible viscous flows in the case where the interaction of the fluid on the body can be neglected. The presence of the obstacle inside the computational domain is treated with a penalization method introducing a parameter $eta$. We show the stability of the scheme and that the pressure and velocity converge towards a limit when the penalty parameter $epsilon$, which induces a small divergence and the time step $delta$t tend to zero with a proportionality constraint $epsilon$ = $lambda$$delta$t. Finally, when $eta$ goes to 0, we show that the problem admits a weak limit which is a weak solution of the Navier-Stokes equations with no-sleep condition on the solid boundary. R{e}sum{e} Dans ce travail nous analysons un sch{e}ma de projection vectorielle (voir [1]) pour traiter le d{e}placement dun corps solide dans un fluide visqueux incompressible dans le cas o` u linteraction du fluide sur le solide est n{e}gligeable. La pr{e}sence de lobstacle dans le domaine solide est mod{e}lis{e}e par une m{e}thode de p{e}nalisation. Nous montrons la stabilit{e} du sch{e}ma et la convergence des variables vitesse-pression vers une limite quand le param etre $epsilon$ qui assure une faible divergence et le pas de temps $delta$t tendent vers 0 avec une contrainte de proportionalit{e} $epsilon$ = $lambda$$delta$t. Finalement nous montrons que leprob{`i} eme converge au sens faible vers une solution des equations de Navier-Stokes avec une condition aux limites de non glissement sur lafront{`i} ere immerg{e}e quand le param etre de p{e}nalisation $eta$ tend vers 0.
The paper is concerned with the adaptive finite element solution of linear elliptic differential equations using equidistributing meshes. A strategy is developed for defining this type of mesh based on residual-based a posteriori error estimates and rigorously analyzing the convergence of a linear finite element approximation using them. The existence and computation of equidistributing meshes and the continuous dependence of the finite element approximation on mesh are also studied. Numerical results are given to verify the theoretical findings.