Do you want to publish a course? Click here

Adaptive pseudo-time methods for the Poisson-Boltzmann equation with Eulerian solvent excluded surface

82   0   0.0 ( 0 )
 Added by Benjamin Jones
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

This work further improves the pseudo-transient approach for the Poisson Boltzmann equation (PBE) in the electrostatic analysis of solvated biomolecules. The numerical solution of the nonlinear PBE is known to involve many difficulties, such as exponential nonlinear term, strong singularity by the source terms, and complex dielectric interface. Recently, a pseudo-time ghost-fluid method (GFM) has been developed in [S. Ahmed Ullah and S. Zhao, Applied Mathematics and Computation, 380, 125267, (2020)], by analytically handling both nonlinearity and singular sources. The GFM interface treatment not only captures the discontinuity in the regularized potential and its flux across the molecular surface, but also guarantees the stability and efficiency of the time integration. However, the molecular surface definition based on the MSMS package is known to induce instability in some cases, and a nontrivial Lagrangian-to-Eulerian conversion is indispensable for the GFM finite difference discretization. In this paper, an Eulerian Solvent Excluded Surface (ESES) is implemented to replace the MSMS for defining the dielectric interface. The electrostatic analysis shows that the ESES free energy is more accurate than that of the MSMS, while being free of instability issues. Moreover, this work explores, for the first time in the PBE literature, adaptive time integration techniques for the pseudo-transient simulations. A major finding is that the time increment $Delta t$ should become smaller as the time increases, in order to maintain the temporal accuracy. This is opposite to the common practice for the steady state convergence, and is believed to be due to the PBE nonlinearity and its time splitting treatment. Effective adaptive schemes have been constructed so that the pseudo-time GFM methods become more efficient than the constant $Delta t$ ones.



rate research

Read More

The Poisson-Boltzmann equation is a widely used model to study the electrostatics in molecular solvation. Its numerical solution using a boundary integral formulation requires a mesh on the molecular surface only, yielding accurate representations of the solute, which is usually a complicated geometry. Here, we utilize adjoint-based analyses to form two goal-oriented error estimates that allows us to determine the contribution of each discretization element (panel) to the numerical error in the solvation free energy. This information is useful to identify high-error panels to then refine them adaptively to find optimal surface meshes. We present results for spheres and real molecular geometries, and see that elements with large error tend to be in regions where there is a high electrostatic potential. We also find that even though both estimates predict different total errors, they have similar performance as part of an adaptive mesh refinement scheme. Our test cases suggest that the adaptive mesh refinement scheme is very effective, as we are able to reduce the error one order of magnitude by increasing the mesh size less than 20%. This result sets the basis towards efficient automatic mesh refinement schemes that produce optimal meshes for solvation energy calculations.
75 - Zhenning Cai , Yanli Wang 2021
We solve the Boltzmann equation whose collision term is modeled by the hybridization of the binary collision and the BGK approximation. The parameter controlling the ratio of these two collision mechanisms is selected adaptively on every grid cell at every time step. This self-adaptation is based on a heuristic error indicator describing the difference between the model collision term and the original binary collision term. The indicator is derived by controlling the quadratic terms in the modeling error with linear operators. Our numerical experiments show that such error indicator is effective and computationally affordable.
The Poisson-Nernst-Planck equations with generalized Frumkin-Butler-Volmer boundary conditions (PNP-FBV) describe ion transport with Faradaic reactions, and have applications in a number of fields. In this article, we develop an adaptive time-stepping scheme for the solution of the PNP-FBV equations based on two time-stepping methods: a fully implicit (BDF2) method, and an implicit-explicit (SBDF2) method. We present simulations under both current and voltage boundary conditions and demonstrate the ability to simulate a large range of parameters, including any value of the singular perturbation parameter $epsilon$. When the underlying dynamics is one that would have the solutions converge to a steady-state solution, we observe that the adaptive time-stepper based on the SBDF2 method produces solutions that ``nearly converge to the steady state and that, simultaneously, the time-step sizes stabilize to a limiting size $dt_infty$. In the companion to this article cite{YPD_Part2}, we linearize the SBDF2 scheme about the steady-state solution and demonstrate that the linearized scheme is conditionally stable. This conditional stability is the cause of the adaptive time-steppers behaviour. While the adaptive time-stepper based on the fully-implicit (BDF2) method is not subject to such time-step constraints, the required nonlinear solve yields run times that are significantly longer.
103 - Lijie Ji , Yanlai Chen , Zhenli Xu 2018
In numerical simulations of many charged systems at the micro/nano scale, a common theme is the repeated solution of the Poisson-Boltzmann equation. This task proves challenging, if not entirely infeasible, largely due to the nonlinearity of the equation and the high dimensionality of the physical and parametric domains with the latter emulating the system configuration. In this paper, we for the first time adapt a mathematically rigorous and computationally efficient model order reduction paradigm, the so-called reduced basis method (RBM), to mitigate this challenge. We adopt a finite difference method as the mandatory underlying scheme to produce the {em truth approximations} of the RBM upon which the fast algorithm is built and its performance is measured against. Numerical tests presented in this paper demonstrate the high efficiency and accuracy of the fast algorithm, the reliability of its error estimation, as well as its capability in effectively capturing the boundary layer.
Pseudospectral numerical schemes for solving the Dirac equation in general static curved space are derived using a pseudodifferential representation of the Dirac equation along with a simple Fourier-basis technique. Owing to the presence of non-constant coefficients in the curved space Dirac equation, convolution products usually appear when the Fourier transform is performed. The strategy based on pseudodifferential operators allows for efficient computations of these convolution products by using an ordinary fast Fourier transform algorithm. The resulting numerical methods are efficient and have spectral convergence. Simultaneously, wave absorption at the boundary can be easily derived using absorbing layers to cope with some potential negative effects of periodic conditions inherent to spectral methods. The numerical schemes are first tested on simple systems to verify the convergence and are then applied to the dynamics of charge carriers in strained graphene.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا