Do you want to publish a course? Click here

An axiomatizable profinite group with infinitely many open subgroups of index 2

75   0   0.0 ( 0 )
 Added by Mark Shusterman
 Publication date 2016
  fields
and research's language is English




Ask ChatGPT about the research

We show that a profinite group with the same first-order theory as the direct product over all odd primes $p$ of the dihedral group of order $2p$, is necessarily isomorphic to this direct product.



rate research

Read More

We study the subgroup structure of the etale fundamental group $Pi$ of a projective curve over an algebraically closed field of characteristic 0. We obtain an analog of the diamond theorem for $Pi$. As a consequence we show that most normal subgroups of infinite index are semi-free. In particular every proper open subgroup of a normal subgroup of infinite index is semi-free.
The residual closure of a subgroup $H$ of a group $G$ is the intersection of all virtually normal subgroups of $G$ containing $H$. We show that if $G$ is generated by finitely many cosets of $H$ and if $H$ is commensurated, then the residual closure of $H$ in $G$ is virtually normal. This implies that separable commensurated subgroups of finitely generated groups are virtually normal. A stream of applications to separable subgroups, polycyclic groups, residually finite groups, groups acting on trees, lattices in products of trees and just-infinite groups then flows from this main result.
Let $w$ be a multilinear commutator word. In the present paper we describe recent results that show that if $G$ is a profinite group in which all $w$-values are contained in a union of finitely (or in some cases countably) many subgroups with a prescribed property, then the verbal subgroup $w(G)$ has the same property as well. In particular, we show this in the case where the subgroups are periodic or of finite rank.
We completely describe the finitely generated pro-$p$ subgroups of the profinite completion of the fundamental group of an arbitrary $3$-manifold. We also prove a pro-$p$ analogue of the main theorem of Bass--Serre theory for finitely generated pro-$p$ groups.
We prove that all invariant random subgroups of the lamplighter group $L$ are co-sofic. It follows that $L$ is permutation stable, providing an example of an infinitely presented such a group. Our proof applies more generally to all permutational wreath products of finitely generated abelian groups. We rely on the pointwise ergodic theorem for amenable groups.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا