We show that a profinite group with the same first-order theory as the direct product over all odd primes $p$ of the dihedral group of order $2p$, is necessarily isomorphic to this direct product.
We study the subgroup structure of the etale fundamental group $Pi$ of a projective curve over an algebraically closed field of characteristic 0. We obtain an analog of the diamond theorem for $Pi$. As a consequence we show that most normal subgroups of infinite index are semi-free. In particular every proper open subgroup of a normal subgroup of infinite index is semi-free.
The residual closure of a subgroup $H$ of a group $G$ is the intersection of all virtually normal subgroups of $G$ containing $H$. We show that if $G$ is generated by finitely many cosets of $H$ and if $H$ is commensurated, then the residual closure of $H$ in $G$ is virtually normal. This implies that separable commensurated subgroups of finitely generated groups are virtually normal. A stream of applications to separable subgroups, polycyclic groups, residually finite groups, groups acting on trees, lattices in products of trees and just-infinite groups then flows from this main result.
Let $w$ be a multilinear commutator word. In the present paper we describe recent results that show that if $G$ is a profinite group in which all $w$-values are contained in a union of finitely (or in some cases countably) many subgroups with a prescribed property, then the verbal subgroup $w(G)$ has the same property as well. In particular, we show this in the case where the subgroups are periodic or of finite rank.
We completely describe the finitely generated pro-$p$ subgroups of the profinite completion of the fundamental group of an arbitrary $3$-manifold. We also prove a pro-$p$ analogue of the main theorem of Bass--Serre theory for finitely generated pro-$p$ groups.
We prove that all invariant random subgroups of the lamplighter group $L$ are co-sofic. It follows that $L$ is permutation stable, providing an example of an infinitely presented such a group. Our proof applies more generally to all permutational wreath products of finitely generated abelian groups. We rely on the pointwise ergodic theorem for amenable groups.