Do you want to publish a course? Click here

On the residual and profinite closures of commensurated subgroups

123   0   0.0 ( 0 )
 Publication date 2017
  fields
and research's language is English




Ask ChatGPT about the research

The residual closure of a subgroup $H$ of a group $G$ is the intersection of all virtually normal subgroups of $G$ containing $H$. We show that if $G$ is generated by finitely many cosets of $H$ and if $H$ is commensurated, then the residual closure of $H$ in $G$ is virtually normal. This implies that separable commensurated subgroups of finitely generated groups are virtually normal. A stream of applications to separable subgroups, polycyclic groups, residually finite groups, groups acting on trees, lattices in products of trees and just-infinite groups then flows from this main result.



rate research

Read More

Let $Gamma$ be a finitely generated group and $X$ be a minimal compact $Gamma$-space. We assume that the $Gamma$-action is micro-supported, i.e. for every non-empty open subset $U subseteq X$, there is an element of $Gamma$ acting non-trivially on $U$ and trivially on the complement $X setminus U$. We show that, under suitable assumptions, the existence of certain commensurated subgroups in $Gamma$ yields strong restrictions on the dynamics of the $Gamma$-action: the space $X$ has compressible open subsets, and it is an almost $Gamma$-boundary. Those properties yield in turn restrictions on the structure of $Gamma$: $Gamma$ is neither amenable nor residually finite. Among the applications, we show that the (alternating subgroup of the) topological full group associated to a minimal and expansive Cantor action of a finitely generated amenable group has no commensurated subgroups other than the trivial ones. Similarly, every commensurated subgroup of a finitely generated branch group is commensurate to a normal subgroup; the latter assertion relies on an appendix by Dominik Francoeur, and generalizes a result of Phillip Wesolek on finitely generated just-infinite branch groups. Other applications concern discrete groups acting on the circle, and the centralizer lattice of non-discrete totally disconnected locally compact (tdlc) groups. Our results rely, in an essential way, on recent results on the structure of tdlc groups, on the dynamics of their micro-supported actions, and on the notion of uniformly recurrent subgroups.
Let $w$ be a multilinear commutator word. In the present paper we describe recent results that show that if $G$ is a profinite group in which all $w$-values are contained in a union of finitely (or in some cases countably) many subgroups with a prescribed property, then the verbal subgroup $w(G)$ has the same property as well. In particular, we show this in the case where the subgroups are periodic or of finite rank.
We study the subgroup structure of the etale fundamental group $Pi$ of a projective curve over an algebraically closed field of characteristic 0. We obtain an analog of the diamond theorem for $Pi$. As a consequence we show that most normal subgroups of infinite index are semi-free. In particular every proper open subgroup of a normal subgroup of infinite index is semi-free.
We completely describe the finitely generated pro-$p$ subgroups of the profinite completion of the fundamental group of an arbitrary $3$-manifold. We also prove a pro-$p$ analogue of the main theorem of Bass--Serre theory for finitely generated pro-$p$ groups.
We show that a profinite group with the same first-order theory as the direct product over all odd primes $p$ of the dihedral group of order $2p$, is necessarily isomorphic to this direct product.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا