Do you want to publish a course? Click here

On verbal subgroups in finite and profinite groups

99   0   0.0 ( 0 )
 Added by Cristina Acciarri
 Publication date 2017
  fields
and research's language is English




Ask ChatGPT about the research

Let $w$ be a multilinear commutator word. In the present paper we describe recent results that show that if $G$ is a profinite group in which all $w$-values are contained in a union of finitely (or in some cases countably) many subgroups with a prescribed property, then the verbal subgroup $w(G)$ has the same property as well. In particular, we show this in the case where the subgroups are periodic or of finite rank.



rate research

Read More

We study the subgroup structure of the etale fundamental group $Pi$ of a projective curve over an algebraically closed field of characteristic 0. We obtain an analog of the diamond theorem for $Pi$. As a consequence we show that most normal subgroups of infinite index are semi-free. In particular every proper open subgroup of a normal subgroup of infinite index is semi-free.
Following Isaacs (see [Isa08, p. 94]), we call a normal subgroup N of a finite group G large, if $C_G(N) leq N$, so that N has bounded index in G. Our principal aim here is to establish some general results for systematically producing large subgroups in finite groups (see Theorems A and C). We also consider the more specialised problems of finding large (non-abelian) nilpotent as well as abelian subgroups in soluble groups.
Let $G$ be a finite group and $sigma ={sigma_{i} | iin I}$ some partition of the set of all primes $Bbb{P}$, that is, $sigma ={sigma_{i} | iin I }$, where $Bbb{P}=bigcup_{iin I} sigma_{i}$ and $sigma_{i}cap sigma_{j}= emptyset $ for all $i e j$. We say that $G$ is $sigma$-primary if $G$ is a $sigma _{i}$-group for some $i$. A subgroup $A$ of $G$ is said to be: ${sigma}$-subnormal in $G$ if there is a subgroup chain $A=A_{0} leq A_{1} leq cdots leq A_{n}=G$ such that either $A_{i-1}trianglelefteq A_{i}$ or $A_{i}/(A_{i-1})_{A_{i}}$ is $sigma$-primary for all $i=1, ldots, n$, modular in $G$ if the following conditions hold: (i) $langle X, A cap Z rangle=langle X, A rangle cap Z$ for all $X leq G, Z leq G$ such that $X leq Z$, and (ii) $langle A, Y cap Z rangle=langle A, Y rangle cap Z$ for all $Y leq G, Z leq G$ such that $A leq Z$. In this paper, a subgroup $A$ of $G$ is called $sigma$-quasinormal in $G$ if $L$ is modular and ${sigma}$-subnormal in $G$. We study $sigma$-quasinormal subgroups of $G$. In particular, we prove that if a subgroup $H$ of $G$ is $sigma$-quasinormal in $G$, then for every chief factor $H/K$ of $G$ between $H^{G}$ and $H_{G}$ the semidirect product $(H/K)rtimes (G/C_{G}(H/K))$ is $sigma$-primary.
We completely describe the finitely generated pro-$p$ subgroups of the profinite completion of the fundamental group of an arbitrary $3$-manifold. We also prove a pro-$p$ analogue of the main theorem of Bass--Serre theory for finitely generated pro-$p$ groups.
The residual closure of a subgroup $H$ of a group $G$ is the intersection of all virtually normal subgroups of $G$ containing $H$. We show that if $G$ is generated by finitely many cosets of $H$ and if $H$ is commensurated, then the residual closure of $H$ in $G$ is virtually normal. This implies that separable commensurated subgroups of finitely generated groups are virtually normal. A stream of applications to separable subgroups, polycyclic groups, residually finite groups, groups acting on trees, lattices in products of trees and just-infinite groups then flows from this main result.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا