No Arabic abstract
We present new analysis of multi-epoch, H-band, scattered light images of the AB Aur system. We used a Monte Carlo, radiative transfer code to simultaneously model the systems SED and H-band polarized intensity imagery. We find that a disk-dominated model, as opposed to one that is envelope dominated, can plausibly reproduce AB Aurs SED and near-IR imagery. This is consistent with previous modeling attempts presented in the literature and supports the idea that at least a subset of AB Aurs spirals originate within the disk. In light of this, we also analyzed the movement of spiral structures in multi-epoch H-band total light and polarized intensity imagery of the disk. We detect no significant rotation or change in spatial location of the spiral structures in these data, which span a 5.8 year baseline. If such structures are caused by disk-planet interactions, the lack of observed rotation constrains the location of the orbit of planetary perturbers to be >47 AU.
Direct imaging observations have revealed spiral structures in protoplanetary disks. Previous studies have suggested that planet-induced spiral arms cannot explain some of these spiral patterns, due to the large pitch angle and high contrast of the spiral arms in observations. We have carried out three dimensional (3-D) hydrodynamical simulations to study spiral wakes/shocks excited by young planets. We find that, in contrast with linear theory, the pitch angle of spiral arms does depend on the planet mass, which can be explained by the non-linear density wave theory. A secondary (or even a tertiary) spiral arm, especially for inner arms, is also excited by a massive planet. With a more massive planet in the disk, the excited spiral arms have larger pitch angle and the separation between the primary and secondary arms in the azimuthal direction is also larger. We also find that although the arms in the outer disk do not exhibit much vertical motion, the inner arms have significant vertical motion, which boosts the density perturbation at the disk atmosphere. Combining hydrodynamical models with Monte-Carlo radiative transfer calculations, we find that the inner spiral arms are considerably more prominent in synthetic near-IR images using full 3-D hydrodynamical models than images based on 2-D models assuming vertical hydrostatic equilibrium, indicating the need to model observations with full 3-D hydrodynamics. Overall, companion-induced spiral arms not only pinpoint the companions position but also provide three independent ways (pitch angle, separation between two arms, and contrast of arms) to constrain the companions mass.
Context: The complex system HD 100453 AB with a ring-like circumprimary disk and two spiral arms, one of which is pointing to the secondary, is a good laboratory to test spiral formation theories. Aims: To quantify the interaction of HD 100453 B with the circumprimary disk. Methods: Using ALMA band 6 dust continuum and CO isotopologue observations we study the HD 100453 AB system with a spatial resolution of 0.09 x 0.17 at 234 GHz. We use SPH simulations and orbital fitting to investigate the tidal influence of the companion on the disk. Results: We resolve the continuum emission around HD 100453 A into a disk between 0.22 and 0.40 with an inclination of 29.5 deg. and a position angle of 151.0 deg., an unresolved inner disk, and excess mm emission cospatial with the northern spiral arm which was previously detected using scattered light observations. We also detect CO emission from 7 au (well within the disk cavity) out to 1.10, i.e., overlapping with HD 100453 B at least in projection. The outer CO disk PA and inclination differ by up to 10 deg. from the values found for the inner CO disk and the dust continuum emission, which we interpret as due to gravitational interaction with HD 100453 B. Both the spatial extent of the CO disk and the detection of mm emission at the same location as the northern spiral arm are in disagreement with the previously proposed near co-planar orbit of HD 100453 B. Conclusions: We conclude that HD 100453 B has an orbit that is significantly misaligned with the circumprimary disk. Because it is unclear whether such an orbit can explain the observed system geometry we highlight an alternative scenario that explains all detected disk features where another, (yet) undetected, low mass close companion within the disk cavity, shepherds a misaligned inner disk whose slowly precessing shadows excite the spiral arms.
Tau Boo is an intriguing planet-host star that is believed to undergo magnetic cycles similar to the Sun, but with a duration that is about one order of magnitude smaller than that of the solar cycle. With the use of observationally derived surface magnetic field maps, we simulate the magnetic stellar wind of Tau Boo by means of three-dimensional MHD numerical simulations. As the properties of the stellar wind depend on the particular characteristics of the stellar magnetic field, we show that the wind varies during the observed epochs of the cycle. Although the mass loss-rates we find (~2.7e-12 Msun/yr) vary less than 3 per cent during the observed epochs of the cycle, our derived angular momentum loss-rates vary from 1.1 to 2.2e32erg. The spin-down times associated to magnetic braking range between 39 and 78Gyr. We also compute the emission measure from the (quiescent) closed corona and show that it remains approximately constant through these epochs at a value of ~10^{50.6} cm^{-3}. This suggests that a magnetic cycle of Tau Boo may not be detected by X-ray observations. We further investigate the interaction between the stellar wind and the planet by estimating radio emission from the hot-Jupiter that orbits at 0.0462 au from Tau Boo. By adopting reasonable hypotheses, we show that, for a planet with a magnetic field similar to Jupiter (~14G at the pole), the radio flux is estimated to be about 0.5-1 mJy, occurring at a frequency of 34MHz. If the planet is less magnetised (field strengths roughly <4G), detection of radio emission from the ground is unfeasible due to the Earths ionospheric cutoff. According to our estimates, if the planet is more magnetised than that and provided the emission beam crosses the observer line-of-sight, detection of radio emission from Tau Boo b is only possible by ground-based instruments with a noise level of < 1 mJy, operating at low frequencies.
Icy bodies may have delivered the oceans to the early Earth, yet little is known about water in the ice-dominated regions of extra-solar planet-forming disks. The Heterodyne Instrument for the Far-Infrared on-board the Herschel Space Observatory has detected emission from both spin isomers of cold water vapor from the disk around the young star TW Hydrae. This water vapor likely originates from ice-coated solids near the disk surface hinting at a water ice reservoir equivalent to several thousand Earth Oceans in mass. The waters ortho-to-para ratio falls well below that of Solar System comets, suggesting that comets contain heterogeneous ice mixtures collected across the entire solar nebula during the early stages of planetary birth.