Do you want to publish a course? Click here

Precision Millimeter Astrometry of the $alpha$ Centauri AB System

172   0   0.0 ( 0 )
 Added by Rachel Akeson
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

No English abstract



rate research

Read More

We present the discovery of an extreme flaring event from Proxima Cen by ASKAP, ALMA, HST, TESS, and the du Pont Telescope that occurred on 2019 May 1. In the millimeter and FUV, this flare is the brightest ever detected, brightening by a factor of >1000 and >14000 as seen by ALMA and HST, respectively. The millimeter and FUV continuum emission trace each other closely during the flare, suggesting that millimeter emission could serve as a proxy for FUV emission from stellar flares and become a powerful new tool to constrain the high-energy radiation environment of exoplanets. Surprisingly, optical emission associated with the event peaks at a much lower level with a time delay. The initial burst has an extremely short duration, lasting for <10 sec. Taken together with the growing sample of millimeter M dwarf flares, this event suggests that millimeter emission is actually common during stellar flares and often originates from short burst-like events.
We present observations of Epsilon Eridani from the Submillimeter Array (SMA) at 1.3 millimeters and from the Australia Telescope Compact Array (ATCA) at 7 millimeters that reach an angular resolution of ~4 (13 AU). These first millimeter interferometer observations of Epsilon Eridani, which hosts the closest debris disk to the Sun, reveal two distinct emission components: (1) the well-known outer dust belt, which, although patchy, is clearly resolved in the radial direction, and (2) an unresolved source coincident with the position of the star. We use direct model-fitting of the millimeter visibilities to constrain the basic properties of these two components. A simple Gaussian shape for the outer belt fit to the SMA data results in a radial location of $64.4^{+2.4}_{-3.0}$ AU and FWHM of $20.2^{+6.0}_{-8.2}$ AU (fractional width $Delta R/R = 0.3$. Similar results are obtained taking a power law radial emission profile for the belt, though the power law index cannot be usefully constrained. Within the noise obtained (0.2 mJy/beam), these data are consistent with an axisymmetric belt model and show no significant azimuthal structure that might be introduced by unseen planets in the system. These data also limit any stellocentric offset of the belt to $<9$ AU, which disfavors the presence of giant planets on highly eccentric ($>0.1$) and wide (10s of AU) orbits. The flux density of the unresolved central component exceeds predictions for the stellar photosphere at these long wavelengths, by a marginally significant amount at 1.3 millimeters but by a factor of a few at 7 millimeters (with brightness temperature $13000 pm 1600$ K for a source size of the optical stellar radius). We attribute this excess emission to ionized plasma from a stellar corona or chromosphere.
We used the OSIRIS camera at the 10.4 m Gran Telescopio Canarias (GTC) to monitor the astrometric motion of the L4.5 dwarf 2M1821$+$14 over 17 months. The astrometric residuals of eleven epochs have a r.m.s. dispersion of 0.4 mas, which is larger than the average precision of 0.23 mas per epoch and hints towards an additional signal or excess noise. Comparison of the point-spread-functions in OSIRIS and FORS2/VLT images reveals no differences critical for high-precision astrometry, despite the GTCs segmented primary mirror. We attribute the excess noise to an unknown effect that may be uncovered with additional data. For 2M1821$+$14, we measured a relative parallax of $106.15 pm 0.18$ mas and determined a correction of $0.50pm0.05$ mas to absolute parallax, leading to a distance of $9.38 pm0.03$ pc. We excluded at 3-$sigma$ confidence the presence of a companion to 2M1821$+$14 down to a mass ratio of 0.1 ($approx 5, M_mathrm{Jupiter}$) with a period of 50--1000 days and a separation of 0.1--0.7 au. The accurate parallax allowed us to estimate the age and mass of 2M1821$+$14 of 120--700 Myr and 0.049$^{+0.014}_{-0.024}$ M$_odot$, thus confirming its intermediate age and substellar mass. We complement our study with a parallax and proper motion catalogue of 587 stars ($isimeq15.5-22$) close to 2M1821$+$14, used as astrometric references. This study demonstrates sub-mas astrometry with the GTC, a capability applicable for a variety of science cases including the search for extrasolar planets and relevant for future astrometric observations with E-ELT and TMT.
155 - F. Spada , P. Demarque 2019
We present models of alpha Centauri A and B implementing an entropy calibration of the mixing-length parameter alpha_MLT, recently developed and successfully applied to the Sun (Spada et al. 2018, ApJ, 869, 135). In this technique the value of alpha_MLT in the 1D stellar evolution code is calibrated to match the adiabatic specific entropy derived from 3D radiation-hydrodynamics simulations of stellar convective envelopes, whose effective temperature, surface gravity, and metallicity are selected consistently along the evolutionary track. The customary treatment of convection in stellar evolution models relies on a constant, solar-calibrated alpha_MLT. There is, however, mounting evidence that this procedure does not reproduce the observed radii of cool stars satisfactorily. For instance, modelling alpha Cen A and B requires an ad-hoc tuning of alpha_MLT to distinct, non-solar values. The entropy-calibrated models of alpha Cen A and B reproduce their observed radii within 1% (or better) without externally adjusted parameters. The fit is of comparable quality to that of models with freely adjusted alpha_MLT for alpha Cen B (within 1 sigma), while it is less satisfactory for alpha Cen A (within ~ 2.5 sigma). This level of accuracy is consistent with the intrinsic uncertainties of the method. Our results demonstrate the capability of the entropy calibration method to produce stellar models with radii accurate within 1%. This is especially relevant in characterising exoplanet-host stars and their planetary systems accurately.
(Abridged) Hubble Space Telescope (HST) Fine Guidance Sensor astrometric observations of the G4 IV star HD 38529 are combined with the results of the analysis of extensive ground-based radial velocity data to determine the mass of the outermost of two previously known companions. Our new radial velocities obtained with the Hobby-Eberly Telescope and velocities from the Carnegie-California group now span over eleven years. With these data we obtain improved RV orbital elements for both the inner companion, HD 38529 b and the outer companion, HD 38529 c. We identify a rotational period of HD 38529 (P_{rot}=31.65 +/- 0.17 d) with FGS photometry. We model the combined astrometric and RV measurements to obtain the parallax, proper motion, perturbation period, perturbation inclination, and perturbation size due to HD 38529 c. For HD 38529 c we find P = 2136.1 +/- 0.3 d, perturbation semi-major axis alpha =1.05 +/-0.06$ mas, and inclination $i$ = 48.3 deg +/- 4 deg. Assuming a primary mass M_* = 1.48 M_{sun}, we obtain a companion mass M_c = 17.6 ^{+1.5}_{-1.2} M_{Jup}, 3-sigma above a 13 M_{Jup} deuterium burning, brown dwarf lower limit. Dynamical simulations incorporating this accurate mass for HD 38529 c indicate that a near-Saturn mass planet could exist between the two known companions. We find weak evidence of an additional low amplitude signal that can be modeled as a planetary-mass (~0.17 M$_{Jup}) companion at P~194 days. Additional observations (radial velocities and/or Gaia astrometry) are required to validate an interpretation of HD 38529 d as a planetary-mass companion. If confirmed, the resulting HD 38529 planetary system may be an example of a Packed Planetary System.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا