Do you want to publish a course? Click here

Detection of the Water Reservoir in a Forming Planetary System

143   0   0.0 ( 0 )
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

Icy bodies may have delivered the oceans to the early Earth, yet little is known about water in the ice-dominated regions of extra-solar planet-forming disks. The Heterodyne Instrument for the Far-Infrared on-board the Herschel Space Observatory has detected emission from both spin isomers of cold water vapor from the disk around the young star TW Hydrae. This water vapor likely originates from ice-coated solids near the disk surface hinting at a water ice reservoir equivalent to several thousand Earth Oceans in mass. The waters ortho-to-para ratio falls well below that of Solar System comets, suggesting that comets contain heterogeneous ice mixtures collected across the entire solar nebula during the early stages of planetary birth.



rate research

Read More

We report on the detection of a rich water reservoir in the protostellar envelope of the Class 0 source HH211. In striking contrast to all other molecules detected with Herschel/PACS, water emission peaks around the central source where both ortho and para forms are detected. The measured ortho-to-para ratio of just 0.65 indicates formation of water-ice at very low temperatures and a non-destructive photo-desorption process around the protostar. While part of the water emission is likely related to collisional excitation, the centralized morphology around the protostar suggests that radiative excitation is also significant, despite the fact that radiation appears to have a very different impact on the water molecules when compared to the terminal outflow shocks. The very low ortho-to-para ratio suggests that water around the protostar originates from primordial envelope material that has never been thermally processed before.
Nitrogen chemistry in protoplanetary disks and the freeze-out on dust particles is key to understand the formation of nitrogen bearing species in early solar system analogs. So far, ammonia has not been detected beyond the snowline in protoplanetary disks. We aim to find gas-phase ammonia in a protoplanetary disk and characterize its abundance with respect to water vapor. Using HIFI on the Herschel Space Observatory we detect, for the first time, the ground-state rotational emission of ortho-NH$_3$ in a protoplanetary disk, around TW Hya. We use detailed models of the disks physical structure and the chemistry of ammonia and water to infer the amounts of gas-phase molecules of these species. We explore two radial distributions ( confined to $<$60 au like the millimeter-sized grains) and two vertical distributions (near the midplane where water is expected to photodesorb off icy grains) to describe the (unknown) location of the molecules. These distributions capture the effects of radial drift and vertical settling of ice-covered grains. We use physical-chemical models to reproduce the fluxes with assuming that water and ammonia are co-spatial. We infer ammonia gas-phase masses of 0.7-11.0 $times$10$^{21}$ g. For water, we infer gas-phase masses of 0.2-16.0 $times$10$^{22}$ g. This corresponds to NH$_3$/H$_2$O abundance ratios of 7%-84%, assuming that water and ammonia are co-located. Only in the most compact and settled adopted configuration is the inferred NH$_3$/H$_2$O consistent with interstellar ices and solar system bodies of $sim$ 5%-10%. Volatile release in the midplane may occur via collisions between icy bodies if the available surface for subsequent freeze-out is significantly reduced, e.g., through growth of small grains into pebbles or larger.
We present the initial results from a survey for planetary-mass brown dwarfs in the Taurus star-forming region. We have identified brown dwarf candidates in Taurus using proper motions and photometry from several ground- and space-based facilities. Through spectroscopy of some of the more promising candidates, we have found 18 new members of Taurus. They have spectral types ranging from mid M to early L and they include the four faintest known members in extinction-corrected K_s, which should have masses as low as ~4-5 M_Jup according to evolutionary models. Two of the coolest new members (M9.25, M9.5) have mid-IR excesses that indicate the presence of disks. Two fainter objects with types of M9-L2 and M9-L3 also have red mid-IR colors relative to photospheres at <=L0, but since the photospheric colors are poorly defined at >L0, it is unclear whether they have excesses from disks. We also have obtained spectra of candidate members of the IC 348 and NGC 1333 clusters in Perseus that were identified by Luhman et al. (2016). Eight candidates are found to be probable members, three of which are among the faintest and least-massive known members of the clusters (~5 M_Jup).
GM Cep in the young (~4 Myr) open cluster Trumpler 37 has been known to be an abrupt variable and to have a circumstellar disk with very active accretion. Our monitoring observations in 2009-2011 revealed the star to show sporadic flare events, each with brightening of < 0.5 mag lasting for days. These brightening events, associated with a color change toward the blue, should originate from an increased accretion activity. Moreover, the star also underwent a brightness drop of ~1 mag lasting for about a month, during which the star became bluer when fainter. Such brightness drops seem to have a recurrence time scale of a year, as evidenced in our data and the photometric behavior of GM Cep over a century. Between consecutive drops, the star brightened gradually by about 1 mag and became blue at peak luminosity. We propose that the drop is caused by obscuration of the central star by an orbiting dust concentration. The UX Orionis type of activity in GM Cep therefore exemplifies the disk inhomogeneity process in transition between grain coagulation and planetesimal formation in a young circumstellar disk.
WASP-98 is a planetary system containing a hot Jupiter transiting a late-G dwarf. A fainter star 12 arcsec distant has previously been identified as a white dwarf, with a distance and proper motion consistent with a physical association with the planetary system. We present spectroscopy of the white dwarf, with the aim of determining its mass, radius and temperature and hence the age of the system. However, the spectra show the featureless continuum and lack of spectral lines characteristic of the DC class of white dwarfs. We therefore fitted theoretical white dwarf spectra to the ugriz apparent magnitudes and Gaia DR2 parallax of this object in order to determine its physical properties and the age of the system. We find that the system is old, with a lower limit of 3.6 Gyr, but theoretical uncertainties preclude a precise determination of its age. Its kinematics are consistent with membership of the thick disc, but do not allow us to rule out the thin-disc alternative. The old age and low metallicity of the system suggest it is subject to an age-metallicity relation, but analysis of the most metal-rich and metal-poor transiting planetary systems yields only insubstantial evidence of this. We conclude that the study of bound white dwarfs can yield independent ages to planetary systems, but such analysis may be better-suited to DA and DB rather than DC white dwarfs.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا