Do you want to publish a course? Click here

The Structure of Spiral Shocks Excited by Planetary-mass Companions

284   0   0.0 ( 0 )
 Added by Zhaohuan Zhu
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

Direct imaging observations have revealed spiral structures in protoplanetary disks. Previous studies have suggested that planet-induced spiral arms cannot explain some of these spiral patterns, due to the large pitch angle and high contrast of the spiral arms in observations. We have carried out three dimensional (3-D) hydrodynamical simulations to study spiral wakes/shocks excited by young planets. We find that, in contrast with linear theory, the pitch angle of spiral arms does depend on the planet mass, which can be explained by the non-linear density wave theory. A secondary (or even a tertiary) spiral arm, especially for inner arms, is also excited by a massive planet. With a more massive planet in the disk, the excited spiral arms have larger pitch angle and the separation between the primary and secondary arms in the azimuthal direction is also larger. We also find that although the arms in the outer disk do not exhibit much vertical motion, the inner arms have significant vertical motion, which boosts the density perturbation at the disk atmosphere. Combining hydrodynamical models with Monte-Carlo radiative transfer calculations, we find that the inner spiral arms are considerably more prominent in synthetic near-IR images using full 3-D hydrodynamical models than images based on 2-D models assuming vertical hydrostatic equilibrium, indicating the need to model observations with full 3-D hydrodynamics. Overall, companion-induced spiral arms not only pinpoint the companions position but also provide three independent ways (pitch angle, separation between two arms, and contrast of arms) to constrain the companions mass.



rate research

Read More

168 - A. Brucalassi 2014
For the past six years we have carried out a search for massive planets around main sequence and evolved stars in the open cluster (OC) M67, using radial velocity (RV) measurements obtained with HARPS at ESO (La Silla), SOPHIE at OHP and HRS at HET. Additional RV data come from CORALIE at the Euler Swiss Telescope. We aim to perform a long-term study on giant planet formation in open clusters and determine how it depends on stellar mass and chemical composition. We report the detection of three new extrasolar planets: two in orbit around the two G dwarfs YBP1194 and YBP1514, and one around the evolved star S364. The orbital solution for YBP1194 yields a period of 6.9 days, an eccentricity of 0.24, and a minimum mass of 0.34 Mj. YBP1514 shows periodic RV variations of 5.1 days, a minimum mass of 0.40 Mj, and an eccentricity of 0.39. The best Keplerian solution for S364 yields a period of 121.7 days, an eccentricity of 0.35 and a minimum mass of 1.54 Mj. An analysis of H_alpha core flux measurements as well as of the line bisectors spans revealed no correlation with the RV periods, indicating that the RV variations are best explained by the presence of a planetary companion. Remarkably, YBP1194 is one of the best solar twins identified so far, and YBP1194b is the first planet found around a solar twin that belongs to a stellar cluster. In contrast with early reports and in agreement with recent findings, our results show that massive planets around stars of open clusters are as frequent as those around field stars.
We analyse FORS2/VLT $I$-band imaging data to monitor the motions of both components in the nearest known binary brown dwarf WISE J104915.57-531906.1AB (LUH16) over one year. The astrometry is dominated by parallax and proper motion, but with a precision of $sim$0.2 milli-arcsecond per epoch we accurately measure the relative position change caused by the orbital motion of the pair. This allows us to directly measure a mass ratio of $q=0.78pm0.10$ for this system. We also search for the signature of a planetary-mass companion around either of the A and B component and exclude at 3-$sigma$ the presence of planets with masses larger than $2,M_mathrm{Jup}$ and orbital periods of 20--300 d. We update the parallax of LUH16 to $500.51pm0.11$ mas, i.e. just within 2 pc. This study yields the first direct constraint on the mass ratio of LUH16 and shows that the system does not harbour any close-in giant planets.
Bayesian atmospheric retrieval tools can place constraints on the properties of brown dwarfs and hot Jupiters atmospheres. To fully exploit these methods, high signal-to-noise spectral libraries with well-understood uncertainties are essential. We present a high signal-to-noise spectral library (1.10-1.69 microns) of the thermal emission of 76 brown dwarfs and hot Jupiters. All our spectra have been acquired with the Hubble Space Telescopes Wide Field Camera 3 instrument and its G141 grism. The near-infrared spectral types of these objects range from L4 to Y1. Eight of our targets have estimated masses below the deuterium-burning limit. We analyze the database to identify peculiar objects and/or multiple systems, concluding that this sample includes two very-low-surface-gravity objects and five intermediate-surface-gravity objects. In addition, spectral indices designed to search for composite atmosphere brown dwarfs, indicate that eight objects in our sample are strong candidates to have such atmospheres. None of these objects are overluminous, thus their composite atmospheres are unlikely a companion-induced artifact. Five of the eight confirmed candidates have been reported as photometrically variable, suggesting that composite atmospheric indices are useful in identifying brown dwarfs with strongly heterogeneous cloud covers. We compare hot Jupiters and brown dwarfs in a near-infrared color-magnitude diagram. We confirm that the coldest hot Jupiters in our sample have spectra similar to mid-L dwarfs, and the hottest hot Jupiters have spectra similar to those of M-dwarfs. Our sample provides a uniform dataset of a broad range of ultracool atmospheres, allowing large-scale, comparative studies, and providing a HST legacy spectral library.
We present new analysis of multi-epoch, H-band, scattered light images of the AB Aur system. We used a Monte Carlo, radiative transfer code to simultaneously model the systems SED and H-band polarized intensity imagery. We find that a disk-dominated model, as opposed to one that is envelope dominated, can plausibly reproduce AB Aurs SED and near-IR imagery. This is consistent with previous modeling attempts presented in the literature and supports the idea that at least a subset of AB Aurs spirals originate within the disk. In light of this, we also analyzed the movement of spiral structures in multi-epoch H-band total light and polarized intensity imagery of the disk. We detect no significant rotation or change in spatial location of the spiral structures in these data, which span a 5.8 year baseline. If such structures are caused by disk-planet interactions, the lack of observed rotation constrains the location of the orbit of planetary perturbers to be >47 AU.
Theoretical studies suggest that a giant planet around the young star MWC 758 could be responsible for driving the spiral features in its circumstellar disk. Here, we present a deep imaging campaign with the Large Binocular Telescope with the primary goal of imaging the predicted planet. We present images of the disk in two epochs in the $L^{prime}$ filter (3.8 $mu m$) and a third epoch in the $M^{prime}$ filter (4.8 $mu m$). The two prominent spiral arms are detected in each observation, which constitute the first images of the disk at $M^prime$, and the deepest yet in $L^prime$ ($Delta L^prime=$12.1 exterior to the disk at 5$sigma$ significance). We report the detection of a S/N$sim$3.9 source near the end of the Sourthern arm, and, from the sources detection at a consistent position and brightness during multiple epochs, we establish a $sim$90% confidence-level that the source is of astrophysical origin. We discuss the possibilities that this feature may be a) an unresolved disk feature, and b) a giant planet responsible for the spiral arms, with several arguments pointing in favor of the latter scenario. We present additional detection limits on companions exterior to the spiral arms, which suggest that a $lesssim$4 M$_{Jup}$ planet exterior to the spiral arms could have escaped detection. Finally, we do not detect the companion candidate interior to the spiral arms reported recently by Reggiani et al. (2018), although forward modelling suggests that such a source would have likely been detected.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا