Do you want to publish a course? Click here

Magnetic fields in ring galaxies

130   0   0.0 ( 0 )
 Added by David Moss Dr
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

Many galaxies contain magnetic fields supported by galactic dynamo action. However, nothing definitive is known about magnetic fields in ring galaxies. Here we investigate large-scale magnetic fields in a previously unexplored context, namely ring galaxies, and concentrate our efforts on the structures that appear most promising for galactic dynamo action, i.e. outer star-forming rings in visually unbarred galaxies. We use tested methods for modelling $alpha-Omega$ galactic dynamos, taking into account the available observational information concerning ionized interstellar matter in ring galaxies. Our main result is that dynamo drivers in ring galaxies are strong enough to excite large-scale magnetic fields in the ring galaxies studied. The variety of dynamo driven magnetic configurations in ring galaxies obtained in our modelling is much richer than that found in classical spiral galaxies. In particular, various long-lived transients are possible. An especially interesting case is that of NGC 4513 where the ring counter-rotates with respect to the disc. Strong shear in the region between the disc and the ring is associated with unusually strong dynamo drivers for the counter-rotators. The effect of the strong drivers is found to be unexpectedly moderate. With counter-rotation in the disc, a generic model shows that a steady mixed parity magnetic configuration, unknown for classical spiral galaxies, may be excited, although we do not specifically model NGC 4513. We deduce that ring galaxies constitute a morphological class of galaxies in which identification of large-scale magnetic fields from observations of polarized radio emission, as well as dynamo modelling, may be possible. Such studies have the potential to throw additional light on the physical nature of rings, their lifetimes and evolution.



rate research

Read More

62 - Rainer Beck 2015
Radio synchrotron emission is a powerful tool to study the strength and structure of magnetic fields in galaxies. Unpolarized synchrotron emission traces isotropic turbulent fields which are strongest in spiral arms and bars (20-30 mu G) and in central starburst regions (50-100 mu G). Such fields are dynamically important; they affect gas flows and drive gas inflows in central regions. -- Polarized emission traces ordered fields, which can be regular or anisotropic turbulent, where the latter originates from isotropic turbulent fields by the action of compression or shear. The strongest ordered fields (10-15 mu G) are generally found in interarm regions. In galaxies with strong density waves, ordered fields are also observed at the inner edges of spiral arms. Ordered fields with spiral patterns exist in grand-design, barred and flocculent galaxies, and in central regions. Ordered fields in interacting galaxies have asymmetric distributions and are a tracer of past interactions between galaxies or with the intergalactic medium. In radio halos around edge-on galaxies, ordered magnetic fields with X-shaped patterns are observed. -- Faraday rotation measures of the diffuse polarized radio emission from galaxy disks reveal large-scale spiral patterns that can be described by the superposition of azimuthal modes; these are signatures of regular fields generated by mean-field dynamos. Magnetic arms between gaseous spiral arms may also be products of dynamo action, but need a stable spiral pattern to develop. Helically twisted field loops winding around spiral arms were found in two galaxies so far. Large-scale field reversals, like the one found in the Milky Way, could not yet be detected in external galaxies. -- The origin and evolution of cosmic magnetic fields will be studied with forthcoming radio telescopes like the Square Kilometre Array.
We aim to estimate the contribution of the radial component of the Lorentz force to the gas rotation in several types of galaxies. Using typical parameters for the exponential scale of synchrotron emission and the scale length of HI gas, under the assumption of equipartition between the energies of cosmic rays and total magnetic fields, we derive the Lorentz force and compare it to the gravitational force in the radial component of the momentum equation. We distinguish the different contributions between the large-scale and the small-scale turbulent fields by Reynolds averaging. We compare these findings with a dynamical dynamo model. We find a possible reduction of circular gas velocity in the very outer parts and an increase inside a radius of four times the synchrotron scale length. Sufficiently localized radial reversals of the magnetic field may cause characteristic modulations in the gas rotation curve with typical amplitudes of 10-20 km/s. It is unlikely that the magnetic field contributes to the flat rotation in the outer parts of galaxies. If anything, it will emph{impede} the gravitationally supported rotation, demanding for an even higher halo mass to explain the observed rotation profile. We speculate that this may have consequences for ram pressure stripping and the truncation of the stellar disc.
Despite their ubiquity, there are many open questions regarding galactic and cosmic magnetic fields. Specifically, current observational constraints cannot rule out if magnetic fields observed in galaxies were generated in the Early Universe or are of astrophysical nature. Motivated by this we use our magnetic tracers algorithm to investigate whether the signatures of primordial magnetic fields persist in galaxies throughout cosmic time. We simulate a Milky Way-like galaxy in four scenarios: magnetised solely by primordial magnetic fields, magnetised exclusively by SN-injected magnetic fields, and two combined primordial + SN magnetisation cases. We find that once primordial magnetic fields with a comoving strength $B_0 >10^{-12}$ G are considered, they remain the primary source of galaxy magnetisation. Our magnetic tracers show that, even combined with galactic sources of magnetisation, when primordial magnetic fields are strong, they source the large-scale fields in the warm metal-poor phase of the simulated galaxy. In this case, the circumgalactic and intergalactic medium can be used to probe $B_0$ without risk of pollution by magnetic fields originated in the galaxy. Furthermore, whether magnetic fields are primordial or astrophysically-sourced can be inferred by studying local gas metallicity. As a result, we predict that future state-of-the-art observational facilities of magnetic fields in galaxies will have the potential to unravel astrophysical and primordial magnetic components of our Universe.
As one of the prime contributors to the interstellar medium energy budget, magnetic fields naturally play a part in shaping the evolution of galaxies. Galactic magnetic fields can originate from strong primordial magnetic fields provided these latter remain below current observational upper limits. To understand how such magnetic fields would affect the global morphological and dynamical properties of galaxies, we use a suite of high-resolution constrained transport magneto-hydrodynamic cosmological zoom simulations where we vary the initial magnetic field strength and configuration along with the prescription for stellar feedback. We find that strong primordial magnetic fields delay the onset of star formation and drain the rotational support of the galaxy, diminishing the radial size of the galactic disk and driving a higher amount of gas towards the centre. This is also reflected in mock UVJ observations by an increase in the light profile concentration of the galaxy. We explore the possible mechanisms behind such a reduction in angular momentum, focusing on magnetic braking. Finally, noticing that the effects of primordial magnetic fields are amplified in the presence of stellar feedback, we briefly discuss whether the changes we measure would also be expected for galactic magnetic fields of non-primordial origin.
Observations of regular magnetic fields in several nearby galaxies reveal magnetic arms situated between the material arms. The nature of these magnetic arms is a topic of active debate. Previously we found a hint that taking into account the effects of injections of small-scale magnetic fields generated, e.g., by turbulent dynamo action, into the large-scale galactic dynamo can result in magnetic arm formation. We now investigate the joint roles of an arm/interarm turbulent diffusivity contrast and injections of small-scale magnetic field on the formation of large-scale magnetic field (magnetic arms) in the interarm region. We use the relatively simple no-$z$ model for the galactic dynamo. This involves projection on to the galactic equatorial plane of the azimuthal and radial magnetic field components; the field component orthogonal to the galactic plane is estimated from the solenoidality condition. We find that addition of diffusivity gradients to the effect of magnetic field injections makes the magnetic arms much more pronounced. In particular, the regular magnetic field component becomes larger in the interarm space compared to that within the material arms.The joint action of the turbulent diffusivity contrast and small-scale magnetic field injections (with the possible participation of other effects previously suggested) appears to be a plausible explanation for the phenomenon of magnetic arms.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا