Do you want to publish a course? Click here

Do magnetic fields influence gas rotation in galaxies?

120   0   0.0 ( 0 )
 Added by Detlef Elstner
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

We aim to estimate the contribution of the radial component of the Lorentz force to the gas rotation in several types of galaxies. Using typical parameters for the exponential scale of synchrotron emission and the scale length of HI gas, under the assumption of equipartition between the energies of cosmic rays and total magnetic fields, we derive the Lorentz force and compare it to the gravitational force in the radial component of the momentum equation. We distinguish the different contributions between the large-scale and the small-scale turbulent fields by Reynolds averaging. We compare these findings with a dynamical dynamo model. We find a possible reduction of circular gas velocity in the very outer parts and an increase inside a radius of four times the synchrotron scale length. Sufficiently localized radial reversals of the magnetic field may cause characteristic modulations in the gas rotation curve with typical amplitudes of 10-20 km/s. It is unlikely that the magnetic field contributes to the flat rotation in the outer parts of galaxies. If anything, it will emph{impede} the gravitationally supported rotation, demanding for an even higher halo mass to explain the observed rotation profile. We speculate that this may have consequences for ram pressure stripping and the truncation of the stellar disc.



rate research

Read More

RM Synthesis was recently developed as a new tool for the interpretation of polarized emission data in order to separate the contributions of different sources lying on the same line of sight. Until now the method was mainly applied to discrete sources in Faraday space (Faraday screens). Here we consider how to apply RM Synthesis to reconstruct the Faraday dispersion function, aiming at the further extraction of information concerning the magnetic fields of extended sources, e.g. galaxies. The main attention is given to two related novelties in the method, i.e. the symmetry argument in Faraday space and the wavelet technique. We give a relation between our method and the previous applications of RM Synthesis to point-like sources. We demonstrate that the traditional RM Synthesis for a point-like source indirectly implies a symmetry argument and, in this sense, can be considered as a particular case of the method presented here. Investigating the applications of RM Synthesis to polarization details associated with small-scale magnetic fields, we isolate an option which was not covered by the ideas of the Burn theory, i.e. using quantities averaged over small-scale fluctuations of magnetic field and electron density. We describe the contribution of small-scale fields in terms of Faraday dispersion and beam depolarization. We consider the complex polarization for RM Synthesis without any averaging over small-scale fluctuations of magnetic field and electron density and demonstrate that it allows us to isolate the contribution from small-scale field.
95 - M. Kutschera , J. Jalocha 2004
Physical mechanisms that can influence rotation curves of spiral galaxies are discussed. For dark matter studies, possible contributions due to magnetic fields and non-Newtonian gravitational accelerations should be carefully accounted for. We point out that magnetic fields are particularly important in outermost parts of the disk. In the framework of general relativity the physical reason of an enhanced gravity in spiral galaxies depends on the assumed metric. The additional gravity is provided for Schwarzschild metric by nonluminous mass, whereas for Vaidya metric [1] by emission of radiative energy. In the latter case the non-Newtonian acceleration displays 1/r behaviour. Also matter flows contribute to non-Newtonian gravity.
62 - Rainer Beck 2015
Radio synchrotron emission is a powerful tool to study the strength and structure of magnetic fields in galaxies. Unpolarized synchrotron emission traces isotropic turbulent fields which are strongest in spiral arms and bars (20-30 mu G) and in central starburst regions (50-100 mu G). Such fields are dynamically important; they affect gas flows and drive gas inflows in central regions. -- Polarized emission traces ordered fields, which can be regular or anisotropic turbulent, where the latter originates from isotropic turbulent fields by the action of compression or shear. The strongest ordered fields (10-15 mu G) are generally found in interarm regions. In galaxies with strong density waves, ordered fields are also observed at the inner edges of spiral arms. Ordered fields with spiral patterns exist in grand-design, barred and flocculent galaxies, and in central regions. Ordered fields in interacting galaxies have asymmetric distributions and are a tracer of past interactions between galaxies or with the intergalactic medium. In radio halos around edge-on galaxies, ordered magnetic fields with X-shaped patterns are observed. -- Faraday rotation measures of the diffuse polarized radio emission from galaxy disks reveal large-scale spiral patterns that can be described by the superposition of azimuthal modes; these are signatures of regular fields generated by mean-field dynamos. Magnetic arms between gaseous spiral arms may also be products of dynamo action, but need a stable spiral pattern to develop. Helically twisted field loops winding around spiral arms were found in two galaxies so far. Large-scale field reversals, like the one found in the Milky Way, could not yet be detected in external galaxies. -- The origin and evolution of cosmic magnetic fields will be studied with forthcoming radio telescopes like the Square Kilometre Array.
Many galaxies contain magnetic fields supported by galactic dynamo action. However, nothing definitive is known about magnetic fields in ring galaxies. Here we investigate large-scale magnetic fields in a previously unexplored context, namely ring galaxies, and concentrate our efforts on the structures that appear most promising for galactic dynamo action, i.e. outer star-forming rings in visually unbarred galaxies. We use tested methods for modelling $alpha-Omega$ galactic dynamos, taking into account the available observational information concerning ionized interstellar matter in ring galaxies. Our main result is that dynamo drivers in ring galaxies are strong enough to excite large-scale magnetic fields in the ring galaxies studied. The variety of dynamo driven magnetic configurations in ring galaxies obtained in our modelling is much richer than that found in classical spiral galaxies. In particular, various long-lived transients are possible. An especially interesting case is that of NGC 4513 where the ring counter-rotates with respect to the disc. Strong shear in the region between the disc and the ring is associated with unusually strong dynamo drivers for the counter-rotators. The effect of the strong drivers is found to be unexpectedly moderate. With counter-rotation in the disc, a generic model shows that a steady mixed parity magnetic configuration, unknown for classical spiral galaxies, may be excited, although we do not specifically model NGC 4513. We deduce that ring galaxies constitute a morphological class of galaxies in which identification of large-scale magnetic fields from observations of polarized radio emission, as well as dynamo modelling, may be possible. Such studies have the potential to throw additional light on the physical nature of rings, their lifetimes and evolution.
We simulate an isolated, magnetised Milky Way-like disc galaxy using a self-consistent model of unresolved star formation and feedback, evolving the system until it reaches statistical steady state. We show that the quasi-steady-state structure is distinctly layered in galactocentric height $z$, with an innermost region having comparable gas and magnetic pressures (plasma beta $beta sim 1$), an outermost region having dominant gas pressures ($beta gg 1$), and an intermediate region between $300$ pc $lesssim |z| lesssim 3$ kpc that is dynamically dominated by magnetic fields ($beta ll 1$). We find field strengths, gas surface densities, and star formation rates that agree well with those observed both in the Galactic centre and in the Solar neighbourhood. The most significant dynamical effect of magnetic fields on the global properties of the disc is a reduction of the star formation rate by a factor of 1.5-2 with respect to an unmagnetised control simulation. At fixed star formation rate, there is no significant difference in the mass outflow rates or profiles between the magnetised and non-magnetised simulations. Our results for the global structure of the magnetic field have significant implications for models of cosmic ray-driven winds and cosmic-ray propagation in the Galaxy, and can be tested against observations with the forthcoming Square Kilometre Array and other facilities. Finally, we report the discovery of a physical error in the implementation of neutral gas heating and cooling in the popular GIZMO code, which may lead to qualitatively incorrect phase structures if not corrected.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا