Do you want to publish a course? Click here

Solenoidal attractors with bounded combinatorics are shy

107   0   0.0 ( 0 )
 Added by Daniel Smania
 Publication date 2016
  fields
and research's language is English
 Authors Daniel Smania




Ask ChatGPT about the research

We show that in a generic finite-dimensional real-analytic family of real-analytic multimodal maps, the subset of parameters on which the corresponding map has a solenoidal attractor with bounded combinatorics is a set with zero Lebesgue measure.



rate research

Read More

The notion of emph{string attractor} has recently been introduced in [Prezza, 2017] and studied in [Kempa and Prezza, 2018] to provide a unifying framework for known dictionary-based compressors. A string attractor for a word $w=w[1]w[2]cdots w[n]$ is a subset $Gamma$ of the positions ${1,ldots,n}$, such that all distinct factors of $w$ have an occurrence crossing at least one of the elements of $Gamma$. While finding the smallest string attractor for a word is a NP-complete problem, it has been proved in [Kempa and Prezza, 2018] that dictionary compressors can be interpreted as algorithms approximating the smallest string attractor for a given word. In this paper we explore the notion of string attractor from a combinatorial point of view, by focusing on several families of finite words. The results presented in the paper suggest that the notion of string attractor can be used to define new tools to investigate combinatorial properties of the words.
65 - Daniel Smania 2015
Let $mathcal{R}$ be a strongly compact $C^2$ map defined in an open subset of an infinite-dimensional Banach space such that the image of its derivative $D_F mathcal{R}$ is dense for every $F$. Let $Omega$ be a compact, forward invariant and partially hyperbolic set of $mathcal{R}$ such that $mathcal{R}colon Omegarightarrow Omega$ is onto. The $delta$-shadow $W^s_delta(Omega)$ of $Omega$ is the union of the sets $$W^s_delta(G)= {Fcolon dist(mathcal{R}^iF, mathcal{R}^iG) leq delta, for every igeq 0 },$$ where $G in Omega$. Suppose that $W^s_delta(Omega)$ has transversal empty interior, that is, for every $C^{1+Lip}$ $n$-dimensional manifold $M$ transversal to the distribution of dominated directions of $Omega$ and sufficiently close to $W^s_delta(Omega)$ we have that $Mcap W^s_delta(Omega)$ has empty interior in $M$. Here $n$ is the finite dimension of the strong unstable direction. We show that if $delta$ is small enough then $$cup_{igeq 0}mathcal{R}^{-i}W^s_{delta} (Omega)$$ intercepts a $C^k$-generic finite dimensional curve inside the Banach space in a set of parameters with zero Lebesgue measure, for every $kgeq 0$. This extends to infinite-dimensional dynamical systems previous studies on the Lebesgue measure of stable laminations of invariants sets.
A solenoidal manifold is the inverse limit space of a tower of proper coverings of a compact manifold. In this work, we introduce new invariants for solenoidal manifolds, their asymptotic Steinitz orders and their prime spectra, and show they are invariants of the homeomorphism type. These invariants are formulated in terms of the monodromy Cantor action associated to a solenoidal manifold. To this end, we continue our study of invariants for minimal equicontinuous Cantor actions. We introduce the three types of prime spectra associated to such actions, and study their invariance properties under return equivalence. As an application, we show that a nilpotent Cantor action with finite prime spectrum must be stable. Examples of stable actions of the integer Heisenberg group are given with arbitrary prime spectrum. We also give the first examples of nilpotent Cantor actions which are wild.
This paper shows that the celebrated Embedding Theorem of Takens is a particular case of a much more general statement according to which, randomly generated linear state-space representations of generic observations of an invertible dynamical system carry in their wake an embedding of the phase space dynamics into the chosen Euclidean state space. This embedding coincides with a natural generalized synchronization that arises in this setup and that yields a topological conjugacy between the state-space dynamics driven by the generic observations of the dynamical system and the dynamical system itself. This result provides additional tools for the representation, learning, and analysis of chaotic attractors and sheds additional light on the reservoir computing phenomenon that appears in the context of recurrent neural networks.
The Lorenz attractor was introduced in 1963 by E. N. Lorenz as one of the first examples of emph{strange attractors}. However Lorenz research was mainly based on (non-rigourous) numerical simulations and, until recently, the proof of the existence of the Lorenz attractor remained elusive. To address that problem some authors introduced geometric Lorenz models and proved that geometric Lorenz models have a strange attractor. In 2002 it was shown that the original Lorenz model behaves like a geometric Lorenz model and thus has a strange attractor. In this paper we show that geometric Lorenz attractors are computable, as well as their physical measures.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا