Do you want to publish a course? Click here

Computing geometric Lorenz attractors with arbitrary precision

105   0   0.0 ( 0 )
 Added by Cristobal Rojas
 Publication date 2017
and research's language is English




Ask ChatGPT about the research

The Lorenz attractor was introduced in 1963 by E. N. Lorenz as one of the first examples of emph{strange attractors}. However Lorenz research was mainly based on (non-rigourous) numerical simulations and, until recently, the proof of the existence of the Lorenz attractor remained elusive. To address that problem some authors introduced geometric Lorenz models and proved that geometric Lorenz models have a strange attractor. In 2002 it was shown that the original Lorenz model behaves like a geometric Lorenz model and thus has a strange attractor. In this paper we show that geometric Lorenz attractors are computable, as well as their physical measures.



rate research

Read More

For every $rinmathbb{N}_{geq 2}cup{infty}$, we show that the space of ergodic measures is path connected for $C^r$-generic Lorenz attractors while it is not connected for $C^r$-dense Lorenz attractors. Various properties of the ergodic measure space for Lorenz attractors have been showed. In particular, a $C^r$-connecting lemma ($rgeq2$) for Lorenz attractors also has been proved. In $C^1$-topology, we obtain similar properties for singular hyperbolic attractors in higher dimensions.
In this article we construct the parameter region where the existence of a homoclinic orbit to a zero equilibrium state of saddle type in the Lorenz-like system will be analytically proved in the case of a nonnegative saddle value. Then, for a qualitative description of the different types of homoclinic bifurcations, a numerical analysis of the detected parameter region is carried out to discover several new interesting bifurcation scenarios.
A generalization of the Lorenz equations is proposed where the variables take values in a Lie algebra. The finite dimensionality of the representation encodes the quantum fluctuations, while the non-linear nature of the equations can describe chaotic fluctuations. We identify a criterion, for the appearance of such non-linear terms. This depends on whether an invariant, symmetric tensor of the algebra can vanish or not. This proposal is studied in detail for the fundamental representation of $mathfrak{u}(2)$. We find a knotted structure for the attractor, a bimodal distribution for the largest Lyapunov exponent and that the dynamics takes place within the Cartan subalgebra, that does not contain only the identity matrix, thereby can describe the quantum fluctuations.
185 - Peter Hertling 2014
Lanford has shown that Feigenbaums functional equation has an analytic solution. We show that this solution is a polynomial time computable function. This implies in particular that the so-called first Feigenbaum constant is a polynomial time computable real number.
This paper shows that the celebrated Embedding Theorem of Takens is a particular case of a much more general statement according to which, randomly generated linear state-space representations of generic observations of an invertible dynamical system carry in their wake an embedding of the phase space dynamics into the chosen Euclidean state space. This embedding coincides with a natural generalized synchronization that arises in this setup and that yields a topological conjugacy between the state-space dynamics driven by the generic observations of the dynamical system and the dynamical system itself. This result provides additional tools for the representation, learning, and analysis of chaotic attractors and sheds additional light on the reservoir computing phenomenon that appears in the context of recurrent neural networks.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا