Do you want to publish a course? Click here

The prime spectrum of solenoidal manifolds

64   0   0.0 ( 0 )
 Added by Steven Hurder
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

A solenoidal manifold is the inverse limit space of a tower of proper coverings of a compact manifold. In this work, we introduce new invariants for solenoidal manifolds, their asymptotic Steinitz orders and their prime spectra, and show they are invariants of the homeomorphism type. These invariants are formulated in terms of the monodromy Cantor action associated to a solenoidal manifold. To this end, we continue our study of invariants for minimal equicontinuous Cantor actions. We introduce the three types of prime spectra associated to such actions, and study their invariance properties under return equivalence. As an application, we show that a nilpotent Cantor action with finite prime spectrum must be stable. Examples of stable actions of the integer Heisenberg group are given with arbitrary prime spectrum. We also give the first examples of nilpotent Cantor actions which are wild.



rate research

Read More

106 - Daniel Smania 2016
We show that in a generic finite-dimensional real-analytic family of real-analytic multimodal maps, the subset of parameters on which the corresponding map has a solenoidal attractor with bounded combinatorics is a set with zero Lebesgue measure.
Let $X$ be a compact orientable non-Haken 3-manifold modeled on the Thurston geometry $text{Nil}$. We show that the diffeomorphism group $text{Diff}(X)$ deformation retracts to the isometry group $text{Isom}(X)$. Combining this with earlier work by many authors, this completes the determination the homotopy type of $text{Diff}(X)$ for any compact, orientable, prime 3-manifold $X$.
In this work, we develop shape expansions of minimal matchbox manifolds without holonomy, in terms of branched manifolds formed from their leaves. Our approach is based on the method of coding the holonomy groups for the foliated spaces, to define leafwise regions which are transversely stable and are adapted to the foliation dynamics. Approximations are obtained by collapsing appropriately chosen neighborhoods onto these regions along a transverse Cantor foliation. The existence of the transverse Cantor foliation allows us to generalize standard techniques known for Euclidean and fibered cases to arbitrary matchbox manifolds with Riemannian leaf geometry and without holonomy. The transverse Cantor foliations used here are constructed by purely intrinsic and topological means, as we do not assume that our matchbox manifolds are embedded into a smooth foliated manifold, or a smooth manifold.
269 - Mauricio Garay 2013
We consider a pair (H,I) where I is an involutive ideal of a Poisson algebra and H lies in I. We show that if I defines a 2n-gon singularity then, under arithmetical conditions on H, any deformation of H can integrated as a deformation of (H,I).
Let $M$ be a compact manifold of dimension at least 2. If $M$ admits a minimal homeomorphism then $M$ admits a minimal noninvertible map.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا