Do you want to publish a course? Click here

Lectures on Dark Matter Physics

279   0   0.0 ( 0 )
 Added by Mariangela Lisanti
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

Rotation curve measurements provided the first strong indication that a significant fraction of matter in the Universe is non-baryonic. Since then, a tremendous amount of progress has been made on both the theoretical and experimental fronts in the search for this missing matter, which we now know constitutes nearly 85% of the Universes matter density. These series of lectures, first given at the TASI 2015 summer school, provide an introduction to the basics of dark matter physics. They are geared for the advanced undergraduate or graduate student interested in pursuing research in high-energy physics. The primary goal is to build an understanding of how observations constrain the assumptions that can be made about the astro- and particle physics properties of dark matter. The lectures begin by delineating the basic assumptions that can be inferred about dark matter from rotation curves. A detailed discussion of thermal dark matter follows, motivating Weakly Interacting Massive Particles, as well as lighter-mass alternatives. As an application of these concepts, the phenomenology of direct and indirect detection experiments is discussed in detail.



rate research

Read More

207 - Tracy R. Slatyer 2021
These lectures, presented at the 2021 Les Houches Summer School on Dark Matter, provide an introduction to key methods and tools of indirect dark matter searches, as well as a status report on the field circa summer 2021. Topics covered include the possible effects of energy injection from dark matter on the early universe, methods to calculate both the expected energy distribution and spatial distribution of particles produced by dark matter interactions, an outline of theoretical models that predict diverse signals in indirect detection, and a discussion of current constraints and some claimed anomalies. These notes are intended as an introduction to indirect dark matter searches for graduate students, focusing primarily on intuition-building estimates and useful concepts and tools.
153 - Maxim Khlopov 2019
The lack of confirmation for the existence of supersymmetric particles and Weakly Interacting Massive Particles (WIMPs) appeals to extension of the field of studies of the physical nature of dark matter, involving non-supersymmetric and non-WIMP solutions. We briefly discuss some examples of such candidates in their relationship with extension of particle symmetry and pattern of symmetry breaking. We specify in the example of axion-like particles nontrivial features of cosmological reflection of the structure and pattern of Peccei-Quinn-like symmetry breaking. The puzzles of direct and indiect dark matter searches can find solution in the approach of composite dark matter. The advantages and open problems of this approach are specified. We note that detailed analysis of cosmological consequences of any extension of particle model that provides candidates for dark matter inevitably leads to nonstandard features in the corresponding cosmological scenario. It makes possible to use methods of cosmoparticle physics to study physical nature of the dark matter in the combination of its physical, astrophysical and cosmological signatures.
172 - Laura Reina 2012
In these lectures I briefly review the Higgs mechanism of electroweak symmetry breaking and focus on the most relevant aspects of the phenomenology of the Standard Model Higgs boson at hadron colliders, namely the Tevatron and the Large Hadron Collider. Emphasis is put in particular on the Higgs-physics program of both LHC experiments and on the theoretical activity that has entailed from the the need of providing accurate predictions for both signal and background in Higgs-boson searches.
In this talk, we discuss the physics modelling of particle spectra arising from dark matter (DM) annihilation or decay. In the context of the indirect searches of DM, the final state products will, in general, undergo a set of complicated processes such as resonance decays, QED/QCD radiation, hadronisation and hadron decays. This set of processes lead to stable particles (photons, positrons, anti-protons, and neutrinos among others) which travel for very long distances before reaching the detectors. The modelling of their spectra contains some uncertainties which are often neglected in the relevant analyses. We discuss the sources of these uncertainties and estimate their impact on photon energy spectra for benchmark DM scenarios with $m_chi in [10, 1000],$GeV. Instructions for how to retrieve complete tables from Zenodo are also provided.
This white paper summarizes the activities of the Brazilian community concerning dark matter physics and highlights the importance of financial support to Brazilian groups that are deeply involved in experimental endeavours. The flagships of the Brazilian dark matter program are the Cherenkov Telescope Array, DARKSIDE, SBN and LHC experiments, but we emphasize that smaller experiments such as DAMIC and CONNIE constitute important probes to dark sectors as well and should receive special attention. Small experimental projects showing the potential to probe new regions of parameter space of dark matter models are encouraged. On the theoretical and phenomenological side, some groups are devoted to astrophysical aspects such as the dark matter density profile while others explore the signature of dark matter models at colliders, direct and indirect detection experiments. In summary, the Brazilian dark matter community that was born not long ago has grown tremendously in the past years and now plays an important role in the hunt for a dark matter particle.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا