No Arabic abstract
In these lectures I briefly review the Higgs mechanism of electroweak symmetry breaking and focus on the most relevant aspects of the phenomenology of the Standard Model Higgs boson at hadron colliders, namely the Tevatron and the Large Hadron Collider. Emphasis is put in particular on the Higgs-physics program of both LHC experiments and on the theoretical activity that has entailed from the the need of providing accurate predictions for both signal and background in Higgs-boson searches.
These lectures cover aspects of primordial cosmology with a focus on observational tests of physics beyond the Standard Model. The presentation is divided into two parts: In Part I, we study the production of new light particles in the hot big bang and describe their effects on the anisotropies of the cosmic microwave background. In Part II, we investigate the possibility of very massive particles being created during inflation and determine their imprints in higher-order cosmological correlations.
We provide an introduction to the physics of a warped extra dimension and the AdS/CFT correspondence. An AdS/CFT dictionary is given which leads to a 4D holographic view of the 5th dimension. With a particular emphasis on beyond the standard model physics, this provides a window into the strong dynamics associated with either electroweak symmetry breaking or supersymmetry breaking. In this way hierarchies associated with either the electroweak or supersymmetry breaking scale, together with the fermion mass spectrum, can be addressed in a consistent framework.
This series of lectures gives a pedagogical review of the subject of cosmological inflation. I discuss Friedmann-Robertson-Walker cosmology and the horizon and flatness problems of the standard hot Big Bang, and introduce inflation as a solution to those problems, focusing on the simple scenario of inflation from a single scalar field. I discuss quantum modes in inflation and the generation of primordial tensor and scalar fluctuations. Finally, I provide comparison of inflationary models to the WMAP satellite measurement of the Cosmic Microwave Background, and briefly discuss future directions for inflationary physics. The majority of the lectures should be accessible to advanced undergraduates or beginning graduate students with only a background in Special Relativity, although familiarity with General Relativity and quantum field theory will be helpful for the more technical sections.
This note summarizes a pedagogical tutorial on CalcHEP and PYTHIA that was given at TASI 2011 program.
These lectures provide an updated pedagogical treatment of the theoretical structure and phenomenology of some basic mechanisms for inflation, along with an overview of the structure of cosmological uplifts of holographic duality. A full treatment of the problem requires `ultraviolet completion because of the sensitivity of inflation to quantum gravity effects, including back reaction and non-adiabatic production of heavy degrees of freedom. Cosmological observations imply accelerated expansion of the late universe, and provide increasingly precise constraints and discovery potential on the amplitude and shape of primordial tensor and scalar perturbations, and some of their correlation functions. Most backgrounds of string theory have positive potential energy, with a rich but still highly constrained landscape of solutions. The theory contains novel mechanisms for inflation, some subject to significant observational tests. Although the detailed ultraviolet completion is not accessible experimentally, some of these mechanisms directly stimulate a more systematic analysis of the space of low energy theories and signatures relevant for analysis of data, which is sensitive to physics orders of magnitude above the energy scale of inflation as a result of long time evolution (dangerous irrelevance) and the substantial amount of data. Portions of these lectures appeared previously in Les Houches 2013, Post-Planck Cosmology .