Do you want to publish a course? Click here

Robustness of the far-field response of nonlocal plasmonic ensembles

284   0   0.0 ( 0 )
 Added by Christos Tserkezis
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

Contrary to classical predictions, the optical response of few-nm plasmonic particles depends on particle size due to effects such as nonlocality and electron spill-out. Ensembles of such nanoparticles (NPs) are therefore expected to exhibit a nonclassical inhomogeneous spectral broadening due to size distribution. For a normal distribution of free-electron NPs, and within the simple nonlocal Hydrodynamic Drude Model (HDM), both the nonlocal blueshift and the plasmon linewidth are shown to be considerably affected by ensemble averaging. Size-variance effects tend however to conceal nonlocality to a lesser extent when the homogeneous size-dependent broadening of individual NPs is taken into account, either through a local size-dependent damping (SDD) model or through the Generalized Nonlocal Optical Response (GNOR) theory. The role of ensemble averaging is further explored in realistic distributions of noble-metal NPs, as encountered in experiments, while an analytical expression to evaluate the importance of inhomogeneous broadening through measurable quantities is developed. Our findings are independent of the specific nonclassical theory used, thus providing important insight into a large range of experiments on nanoscale and quantum plasmonics.



rate research

Read More

We report on reflection spectra of caesium atoms in close vicinity of a nanostructured metallic meta-surface. We show that the hyperfine sub-Doppler spectrum of the $6S_{1/2} - 6P_{3/2}$ resonance transition at 852 nm is strongly affected by the coupling to the plasmonic resonance of the nanostructure. Fine tuning of dispersion and positions of the atomic lines in the near-field of plasmonic metamaterials could have uses and implications for the atom-based metrology, sensing and the development of atom-on-a-chip devices.
Silver, especially in the form of nanostructures, is widely employed as an antimicrobial agent in a large range of commercial products. The origin of the biocidal mechanism has been elucidated in the last decades, and most likely originates from silver cation release due to oxidative dissolution followed by cellular uptake of silver ions, a process that causes a severe disruption of bacterial metabolism and eventually leads to eradication. Despite the large number of works dealing with the effects of nanosilver shape/size on the antibacterial mechanism and on the (bio)physical chemistry pathways that drive bacterial eradication, little effort has been devoted to the investigation of the silver NPs plasmon response upon interaction with bacteria. Here we present a detailed investigation of the bacteria-induced changes of the plasmon spectral and dynamical features after exposure to one of the most studied bacterial models, Escherichia Coli. Ultrafast pump-probe measurements indicate that the dramatic changes on particle size/shape and crystallinity, which stem from a bacteria-induced oxidative dissolution process, translate into a clear modification of the plasmon spectral and dynamical features. This study may open innovative new avenues in the field of biophysics of bio-responsive materials, with the aim of providing new and reliable biophysical signatures of the interaction of these materials with complex biological environments.
An electric field that builds in the direction against current, known as negative nonlocal resistance, arises naturally in viscous flows and is thus often taken as a telltale of this regime. Here we predict negative resistance for the ballistic regime, wherein the ee collision mean free path is greater than the length scale at which the system is being probed. Therefore, negative resistance alone does not provide strong evidence for the occurrence of the hydrodynamic regime; it must thus be demoted from the rank of a smoking gun to that of a mere forerunner. Furthermore, we find that negative response is log-enhanced in the ballistic regime by the physics related to the seminal Dorfman-Cohen log divergence due to memory effects in the kinetics of dilute gases. The ballistic regime therefore offers a unique setting for exploring these interesting effects due to electron interactions.
209 - K. Schraml , M. Kaniber , J. Bartl 2015
We present numerical studies, nano-fabrication and optical characterization of bowtie nanoantennas demonstrating their superior performance with respect to the electric field enhancement as compared to other Au nanoparticle shapes. For optimized parameters, we found mean intensity enhancement factors >2300x in the feed-gap of the antenna, decreasing to 1300x when introducing a 5nm titanium adhesion layer. Using electron beam lithography we fabricated gold bowties on various substrates with feed-gaps and tip radii as small as 10nm. In polarization resolved measurement we experimentally observed a blue shift of the surface plasmon resonance from 1.72eV to 1.35eV combined with a strong modification of the electric field enhancement in the feed-gap. Under excitation with a 100fs pulsed laser source, we observed non-linear light emission arising from two-photon photoluminescence and second harmonic generation from the gold. The bowtie nanoantenna shows a high potential for outstanding conversion efficiencies and the enhancement of other optical effects which could be exploited in future nanophotonic devices.
We propose a new approach to understand the time-dependent temperature increasing process of gold-silica core-shell nanoparticles injected into chicken tissues under near-infrared laser irradiation. Gold nanoshells strongly absorb near-infrared radiations and efficiently transform absorbed energy into heat. Temperature rise given by experiments and numerical calculations based on bioheat transfer are in good agreement. Our work improves the analysis of a recent study [Richardson et al., Nano Lett. 9, 1139 (2009)] by including effects of the medium perfusion on temperature increase. The theoretical analysis can also be used to estimate the distribution of nanoparticles in experimental samples and provide a relative accuracy prediction for the temperature profile of new systems. This methodology would provide a novel and reliable tool for speeding up photothermal investigations and designing state-of-the-art photothermal devices.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا