No Arabic abstract
Silver, especially in the form of nanostructures, is widely employed as an antimicrobial agent in a large range of commercial products. The origin of the biocidal mechanism has been elucidated in the last decades, and most likely originates from silver cation release due to oxidative dissolution followed by cellular uptake of silver ions, a process that causes a severe disruption of bacterial metabolism and eventually leads to eradication. Despite the large number of works dealing with the effects of nanosilver shape/size on the antibacterial mechanism and on the (bio)physical chemistry pathways that drive bacterial eradication, little effort has been devoted to the investigation of the silver NPs plasmon response upon interaction with bacteria. Here we present a detailed investigation of the bacteria-induced changes of the plasmon spectral and dynamical features after exposure to one of the most studied bacterial models, Escherichia Coli. Ultrafast pump-probe measurements indicate that the dramatic changes on particle size/shape and crystallinity, which stem from a bacteria-induced oxidative dissolution process, translate into a clear modification of the plasmon spectral and dynamical features. This study may open innovative new avenues in the field of biophysics of bio-responsive materials, with the aim of providing new and reliable biophysical signatures of the interaction of these materials with complex biological environments.
We report on reflection spectra of caesium atoms in close vicinity of a nanostructured metallic meta-surface. We show that the hyperfine sub-Doppler spectrum of the $6S_{1/2} - 6P_{3/2}$ resonance transition at 852 nm is strongly affected by the coupling to the plasmonic resonance of the nanostructure. Fine tuning of dispersion and positions of the atomic lines in the near-field of plasmonic metamaterials could have uses and implications for the atom-based metrology, sensing and the development of atom-on-a-chip devices.
We present a synchrotron-based X-ray scattering technique which allows disentangling magnetic properties of heterogeneous systems with nanopatterned surfaces. This technique combines the nmrange spatial resolution of surface morphology features provided by Grazing Incidence Small Angle X-ray Scattering and the high sensitivity of Nuclear Resonant Scattering to magnetic order. A single experiment thus allows attributing magnetic properties to structural features of the sample; chemical and structural properties may be correlated analogously. We demonstrate how this technique shows the correlation between structural growth and evolution of magnetic properties for the case of a remarkable magnetization reversal in a structurally and magnetically nanopatterned sample system.
Plasmonics offers an enticing platform to manipulate light at the subwavelength scale. Currently, loss represents the most serious challenge impeding its progress and broad impact towards practical technology. In this regard, silver (Ag) is by far the preferred plasmonic material at optical frequencies, having the lowest loss among all metals in this frequency range. However, large discrepancies exist among widely quoted values of optical loss in Ag due to variations in sample preparation procedures that produce uncontrollable grain boundaries and defects associated with additional loss. A natural question arises: what are the intrinsic fundamental optical properties of Ag and its ultimate possibilities in the field of plasmonics? Using atomically-smooth epitaxial Ag films, we extracted new optical constants that reflect significantly reduced loss and measured greatly enhanced propagation distance of surface plasmon polaritons (SPPs) beyond what was previously considered possible. By establishing a new benchmark in the ultimate optical properties of Ag, these results will have a broad impact for metamaterials and plasmonic applications.
We report on the resonant coupling between localized surface plasmon resonances (LSPRs) in nanostructured Ag films, and an adsorbed monolayer of Rhodamine 6G dye. Hybridization of the plasmons and molecular excitons creates new coupled polaritonic modes, which have been tuned by varying the LSPR wavelength. The resulting polariton dispersion curve shows an anticrossing behavior which is very well fit by a simple coupled-oscillator Hamiltonian, giving a giant Rabi-splitting energy of ~400 meV. The strength of this coupling is shown to be proportional to the square root of the molecular density. The Raman spectra of R6G on these films show an enhancement of many orders of magnitude due to surface enhanced scattering mechanisms; we find a maximum signal when a polariton mode lies in the middle of the Stokes shifted emission band.
Contrary to classical predictions, the optical response of few-nm plasmonic particles depends on particle size due to effects such as nonlocality and electron spill-out. Ensembles of such nanoparticles (NPs) are therefore expected to exhibit a nonclassical inhomogeneous spectral broadening due to size distribution. For a normal distribution of free-electron NPs, and within the simple nonlocal Hydrodynamic Drude Model (HDM), both the nonlocal blueshift and the plasmon linewidth are shown to be considerably affected by ensemble averaging. Size-variance effects tend however to conceal nonlocality to a lesser extent when the homogeneous size-dependent broadening of individual NPs is taken into account, either through a local size-dependent damping (SDD) model or through the Generalized Nonlocal Optical Response (GNOR) theory. The role of ensemble averaging is further explored in realistic distributions of noble-metal NPs, as encountered in experiments, while an analytical expression to evaluate the importance of inhomogeneous broadening through measurable quantities is developed. Our findings are independent of the specific nonclassical theory used, thus providing important insight into a large range of experiments on nanoscale and quantum plasmonics.