Do you want to publish a course? Click here

29Si nuclear magnetic resonance study of URu2Si2 under pressure

112   0   0.0 ( 0 )
 Added by Kent Shirer
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report 29Si nuclear magnetic resonance measurements of single crystals and aligned powders of URu2Si2 under pressure in the hidden order and paramagnetic phases. We find that the Knight shift decreases with applied pressure, consistent with previous measurements of the static magnetic susceptibility. Previous measurements of the spin lattice relaxation time revealed a partial suppression of the density of states below 30 K. This suppression persists under pressure, and the onset temperature is mildly enhanced.



rate research

Read More

The low temperature dependence of the nuclear magnetic resonance frequency and spin-lattice relaxation rate measured in the chiral magnet MnSi by Yasuoka and coworkers [J. Phys. Soc. Jpn. 85, 073701 (2016)] is interpreted in terms of helimagnon excitations. The theoretically predicted gapless and anisotropic dispersion relation which is probed at extremely small energy is experimentally confirmed. Whenever comparison is possible, the results are found quantitatively consistent with those of the inelastic neutron scattering and muon spin rotation and relaxation techniques. Further studies are suggested.
447 - E Hassinger , D Aoki , F Bourdarot 2009
We describe here recent inelastic neutron scattering experiments on the heavy fermion compound URu2Si2 realized in order to clarify the nature of the hidden order (HO) phase which occurs below T_0 = 17.5 K at ambient pressure. The choice was to measure at a given pressure P where the system will go, by lowering the temperature, successively from paramagnetic (PM) to HO and then to antiferromagnetic phase (AF). Furthermore, in order to verify the selection of the pressure, a macroscopic detection of the phase transitions was also achieved in situ via its thermal expansion response detected by a strain gauge glued on the crystal. Just above P_x = 0.5 GPa, where the ground state switches from HO to AF, the Q_0 = (1, 0, 0) excitation disappears while the excitation at the incommensurate wavevector Q_1 = (1.4, 0, 0) remains. Thus, the Q_0 = (1, 0, 0) excitation is intrinsic only in the HO phase. This result is reinforced by studies where now pressure and magnetic field $H$ can be used as tuning variable. Above P_x, the AF phase at low temperature is destroyed by a magnetic field larger than H_AF (collapse of the AF Q_0 = (1, 0, 0) Bragg reflection). The field reentrance of the HO phase is demonstrated by the reappearance of its characteristic Q_0 = (1, 0, 0) excitation. The recovery of a PM phase will only be achieved far above H_AF at H_M approx 35 T. To determine the P-H-T phase diagram of URu2Si2, macroscopic measurements of the thermal expansion were realized with a strain gauge. The reentrant magnetic field increases strongly with pressure. Finally, to investigate the interplay between superconductivity (SC) and spin dynamics, new inelastic neutron scattering experiments are reported down to 0.4 K, far below the superconducting critical temperature T_SC approx 1.3 K as measured on our crystal by diamagnetic shielding.
New inelastic neutron scattering experiments have been performed on URu2Si2 with special focus on the response at Q0=(1,0,0), which is a clear signature of the hidden order (HO) phase of the compound. With polarized inelastic neutron experiments, it is clearly shown that below the HO temperature (T0 = 17.8 K) a collective excitation (the magnetic resonance at E0 approx 1.7 meV) as well as a magnetic continuum co-exist. Careful measurements of the temperature dependence of the resonance lead to the observation that its position shifts abruptly in temperature with an activation law governed by the partial gap opening and that its integrated intensity has a BCS-type temperature dependence. Discussion with respect to recent theoretical development is made.
We have performed nuclear quadrupole resonance and nuclear magnetic resonance measurements on UCoAl with strong Ising-type anisotropy under $b$- and $c$-axes uniaxial pressure. In the $b$-axis uniaxial pressure ($P_{parallel b}$) measurement, we observed an increase in the metamagnetic transition field with increasing $P_{parallel b}$. In the $c$-axis uniaxial pressure ($P_{parallel c}$) measurement, on the other hand, we observed a ferromagnetic transition in zero magnetic field along the $c$-axis above $P_{parallel c}$ = 0.08 GPa. The anomaly of the nuclear spin-lattice relaxation rate divided by the temperature $left[ (T_1 T)^{-1} right]$ at $T$ = 20 K is suppressed by $P_{parallel b}$ and slightly enhanced by $P_{parallel c}$. The anisotropic uniaxial pressure response indicates that uniaxial pressure is a good parameter for tuning the Ising magnetism in UCoAl.
Neutron-scattering and specific-heat measurements of the heavy-fermion superconductor URu2Si2 under hydrostatic pressure and with Rh-doping [U(Ru{0.98}Rh{0.02})2Si2] show the existence of two magnetic phase transitions. At the second-order phase transition Tm &#8776; 17.5 K, a tiny ordered moment is established, while at TM < Tm, a first-order phase transition (under pressure or doping) gives rise to a large moment. The results can be understood in terms of a hidden OP Psi coupled to the ordered moment m, where m and Psi have the same symmetry.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا