Do you want to publish a course? Click here

Zero-field 29Si nuclear magnetic resonance signature of helimagnons in MnSi

162   0   0.0 ( 0 )
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

The low temperature dependence of the nuclear magnetic resonance frequency and spin-lattice relaxation rate measured in the chiral magnet MnSi by Yasuoka and coworkers [J. Phys. Soc. Jpn. 85, 073701 (2016)] is interpreted in terms of helimagnon excitations. The theoretically predicted gapless and anisotropic dispersion relation which is probed at extremely small energy is experimentally confirmed. Whenever comparison is possible, the results are found quantitatively consistent with those of the inelastic neutron scattering and muon spin rotation and relaxation techniques. Further studies are suggested.



rate research

Read More

We report 29Si nuclear magnetic resonance measurements of single crystals and aligned powders of URu2Si2 under pressure in the hidden order and paramagnetic phases. We find that the Knight shift decreases with applied pressure, consistent with previous measurements of the static magnetic susceptibility. Previous measurements of the spin lattice relaxation time revealed a partial suppression of the density of states below 30 K. This suppression persists under pressure, and the onset temperature is mildly enhanced.
191 - M. Kugler , G. Brandl , J. Waizner 2015
A magnetic helix realizes a one-dimensional magnetic crystal with a period given by the pitch length $lambda_h$. Its spin-wave excitations -- the helimagnons -- experience Bragg scattering off this periodicity leading to gaps in the spectrum that inhibit their propagation along the pitch direction. Using high-resolution inelastic neutron scattering the resulting band structure of helimagnons was resolved by preparing a single crystal of MnSi in a single magnetic-helix domain. At least five helimagnon bands could be identified that cover the crossover from flat bands at low energies with helimagnons basically localized along the pitch direction to dispersing bands at higher energies. In the low-energy limit, we find the helimagnon spectrum to be determined by a universal, parameter-free theory. Taking into account corrections to this low-energy theory, quantitative agreement is obtained in the entire energy range studied with the help of a single fitting parameter.
Below a temperature of approximately 29 K the manganese magnetic moments of the cubic binary compound MnSi order to a long-range incommensurate helical magnetic structure. Here, we quantitatively analyze a high-statistic zero-field muon spin rotation spectrum recorded in the magnetically ordered phase of MnSi by exploiting the result of representation theory as applied to the determination of magnetic structures. Instead of a gradual rotation of the magnetic moments when moving along a <111> axis, we find that the angle of rotation between the moments of certain subsequent planes is essentially quenched. It is the magnetization of pairs of planes which rotates when moving along a <111> axis, thus preserving the overall helical structure.
169 - Ji Bian , Min Jiang , Jiangyu Cui 2017
This paper describes a general method for manipulation of nuclear spins in zero magnetic field. In the absence of magnetic fields, the spins lose the individual information on chemical shifts and inequivalent spins can only be distinguished by nuclear gyromagnetic ratios and spin-spin couplings. For spin-1/2 nuclei with different gyromagnetic ratios (i.e., different species) in zero magnetic field, we describe the scheme to realize a set of universal quantum logic gates, e.g., arbitrary single-qubit gates and two-qubit controlled-NOT gate. This method allows for universal quantum control in systems which might provide promising applications in materials science, chemistry, biology,quantum information processing and fundamental physics.
181 - Claude Berthier 2017
In this review, we describe the potentialities offered by the nuclear magnetic resonance (NMR) technique to explore at a microscopic level new quantum states of condensed matter induced by high magnetic fields. We focus on experiments realised in resistive (up to 34~T) or hybrid (up to 45~T) magnets, which open a large access to these quantum phase transitions. After an introduction on NMR observable, we consider several topics: quantum spin systems (spin-Peierls transition, spin ladders, spin nematic phases, magnetisation plateaus and Bose-Einstein condensation of triplet excitations), the field-induced charge density wave (CDW) in high $T_c$~superconductors, and exotic superconductivity including the Fulde-Ferrel-Larkin-Ovchinnikov superconducting state and the field-induced superconductivity due to the Jaccarino-Peter mechanism.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا